N

N

Systolic Petri Nets
Alexandre Abellard, Patrick Abellard

» To cite this version:

Alexandre Abellard, Patrick Abellard. Systolic Petri Nets. Pawel Pawlewski. Petri Nets Applications,
IntechOpen, pp.63-94, 2010, 978-953-307-047-6. sic_ 01798369

HAL Id: sic_ 01798369
https://archivesic.ccsd.cnrs.fr/sic_ 01798369
Submitted on 4 Jul 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://archivesic.ccsd.cnrs.fr/sic_01798369
https://hal.archives-ouvertes.fr

Systolic Petri Nets

Alexandre Abellard and Patrick Abellard
HandiBio EA4322, IUT, Toulon University
France

1. Introduction

In many research fields and applications requiring real time, such as signal, speech or image
processing, problems are often characterized by the amount of data to deal with.

However, it can happen that real time constraints are difficult to satisfy without taking into
account the intrinsic parallelism of processings to perform. Thus, diverse architectures
appeared (SIMD, MIMD...), leading to different classes of architecture. Literature showed
the advantages and drawbacks of each of them. Moreover, expensive costs limited their
applications during a long time.

Systolic architectures defined by H.T. Kung are a particular class of parallel architectures.
They constitute specialized systems characterized by a repetitive structure of identical
elementary processors locally and regularly interconnected. Synchronous data circulate
through the architecture, which interact at each encounter. Several important difficulties like
the central memory sharing, buses access conflicts... can be therefore avoided. All problems
are however not systolizable. These networks are designed for the repetitive identical
processing of a huge amount of data, which is the case, for example, in many signal and
image processing algorithms.

The conception of these networks has been the subject of many studies, the main ones are
developped in the first part of this chapter. The limited number of systolic processors
available on the market was problematic for the development of methodologies for a long
time. Now, programmable components enable to be free from this problem. To ease their
implementation, we developped a methodology based on a formal and universal tool (Petri
Nets) that is developped in the second part of the paper.

2. Definitions

2.1 Systolic architecture

This architecture is considered as an intermediate between data flow and pipeline. It has
been introduced in (Kung, 1982) and is made of a set of processors or processing cells locally
interconnected. Each cell can run a simple or complex operation and links between cells are
established so as to minimize the associated paths complexity.

www.intechopen.com

64 Petri Nets: Applications

Just like in a pipeline structure, information move in a cascade scheduling form.
Communications between outside environment and systolic network are established with
peripheral cells that constitute the network I/O ports.

2.2 Systolic networks properties

Systolic networks have interesting properties(“Quinton & Robert, 1991”) :

- Data flow coming from the environment are intensively used

- Networks association is made easier thanks to structure cascadability

- Elementary cells are not complex

- Data flow are simple and regular

- A set of elementary processings is performed synchronously on different cells

These main properties enable to simplify their implementation on VLSI once an automated
and rigorous conception method has been defined.

Several kinds of nets exist, according to different basic cells (Fig. 1) : the linear array,
orthogonal array and hexagonal array. All can be unidirectional or bidirectional. In this
paper, we will mostly focus on linear arrays since it better suits our application, Fig. 1
therefore does not show all possible propagation directions in arrays.

]
F 1
F 1
F 1
]

- - —
— —

L 3
L 3
L

iz

Cd

— > -
I

—] > > -
¥

— s w —

el
Fig. 1. Basic systolic architectures : (a) linear array, (b) squared array, (c) hexagonal array

www.intechopen.com

Systolic Petri Nets 65

These architectures take advantage of the massive parallelism encountered in processing
applications (Johnson & Hurson, 1993). They only need a minimum of operators (Sousa,
1998) and memory accesses (Kung, 1988) thanks to a very efficient communications system
(Lim & Swartzlander, 1996a). Their combination allows to obtain arrays (Lim &
Swartzlander, 1996a) that can be used in a wide range of applications : Discrete Fourier
Transform (Lim & Swartzlander, 1999b) (Jackson et al., 2004) (Nash, 2005), convolution (Lee
& Song, 2003), filtering (Lee & Song, 2004), matrix operations (Yang et al., 2005), dynamic
programming (Lee & Song, 2002)... The regularity of their structures facilitate their
hardware, implementation, for instance in FPGAs (Mihu et al., 2001) (Nash, 2002) (Castro-
Pareja et al., 2004).

2.3 Principles

2.3.1 Example of a linear network
Linear equation solving is done thanks to the following equation:

yic*tl = aj 1. x4 T ¥k, 0<k<n-1,1<i<n 1)

Systolic network defined by Kung is established with a group of interconnected processors,
each having 3 registers : Ry for yk, R, for a;jx and Ry for x. Each register has a connection as
input and another one as output. Kung defined 2 kinds of cells : squared (Fig. 2a) and
hexagonal (Fig. 2b).

] — > Xish e
M-l_.. Lt Y
¢ =i Nkl
(a) iy (b) !'-I

Fig. 2. Square (a) and hexagonal (b) cells

These two kinds of cells work in this operating cycle.

1 - the cell loads inputs y¥, xx+1 and ajx+1 in respective registers Ry, Ry and R..
2 - yk*1is processed using equation (1)

3 - yi¥*1, xi+1 and ajx+1 are transferred to the output

Example of the Matrix-Vector Product (MVP)

Y=A.X ()
Relations to implement are then :
yik+1 = A, k+1 - Xi, k+1 + Yik (3)
yi?=0yi=yW

www.intechopen.com

66

Petri Nets: Applications

with W=dim(X), 0<k <n-1, 1<i<n

For example, with W =3:

N ay dp dp

Yo [T Gy Ay Ay |

Y3 a; Az Ay

Equation (3) then gives :

y1=y10+yil +y12 +y13 = y1 = an.xg +an.xe + a;s.xs
y2=y20 + yol +y22 +y23 = yo = ax.x1 + an.X2 + axn.Xs
y3=y30 + yal +y32 + y33 = y3 = az.xg + azn.xe + azsxs

Given an elementary recurrence relation :

Vil = ay 1+ . X, k1 + Vil

successive recurrence steps are performed at consecutive instants. The use of parallelism
done via several cells enable to perform a step of many different elementary recurrences at
the same time. Systolic network is therefore made of a set of (2.n-1) linearly interconnected
squared cells, each one receiving yi¥, xx+1 and a; x+1 at each step of time t; (Fig. 3).

t6 O O G ST | R O
L 0 I . - .
P anB_ O an oo sl
3 O a 12 e eseneees 0 821 0
N o o N T o
b — S S o
fy f f f f f
— Gy |e C e C e I G |e Cy =
x5 50 > = > > >

Fig. 3. Linear systolic network of matrix-vector product Y=A.X, n=3

x1 is used by Cy cell at fo, then is transmitted to C; that processes it at t; and so on from left to
right. A similar processing is done for y; data from right to left. Fig. 4 shows the detail of
data propagation on cells performing yik*! = aj 1+1 . Xj, k+1 + Vi¥ .

www.intechopen.com

Systolic Petri Nets

67

to:

t:

t:

t3:

ta:

ts:

te:

t7:

ts:

to:

Fig. 4. Linear systolic network processing for matrix-vector product Y=A.X (size 3)

www.intechopen.com

0 0 0 0 0
S N SR SR
«— (G |e Ci [e C le G (e Cs |&—
71» > > > > -
0 0 0 0 0
N AR R SR
«— Cy |« Cy |« G [« Cs [« Cy l&—
—> > > »> > >
0 X1
f air f f
f l yl y2
«— () |« Cy |« C, |« C; |« Cy |l&—
— > > g > >
X2 X1
0 aiz 0 ant 0
I Y A A
«— () |« Cy |« C, |« Cs |« Cy |e—
— > > > > RN
0 X2 X1
as 0 an 0 asi
A R S R
+«—1 C [« Ci | C |« Cs |« Cy [&—
—> > >
X3 X2 X1
0 axs 0 az 0
oo Loy |
+— Co < C1 < C2 < C3 < C4 ——
—> —>
0 X3 X2 X1
0 0 as3 0 0
l y2 l l y3 l l 0
«— Cp |« C1 |« G e Cs |« Cy |e—
—> > >
0 X3 X2
0 0 0 0 0
V2 l l y3 l l l 0
«— Cp |« Cy |« G, |« Cs |« Cy |[e—
0l X3 72>
IR
«—) |« Ci |« C; |« Cs |« Cy le—
—> > »> > »> >
0 X3
0 0 0 0 0
0 R N S
<« Cp |« C1 |« Co |le— C3 |« Cy <
— —»

68 Petri Nets: Applications

2.3.2 Example of a bi-dimensional network
Consider now the matrix product : C = A.B, being sizes of A (m,n), B (n,p) and C (m,p). Each
coefficient of C is processed using :

Cij = Sum(ai,k.bk,j) k=1.n , 1<i<n, 1Sj£1‘1, 1<k<n (4)

Ain

o

Cin —b] —» Cout

Aout

Fig. 5. Elementary cell
Aout = Ain Cout = Cin + air1~b

This relation can be expressed via a recurrence relation like in 2.3.1. Coefficients aix
propagate on j axis, and by; propagate on i axis. k is a recurrence axis that can be assimilated
to a temporal axis. Elementary processings given by (4) are all identical. Network is thus
made of a sole kind of cell (Fig. 5) that can be associated in square.

Fig. 6. Example of a 2x2 squared network

Data propagation is detailed on Fig. 7. Other organisation and data propagation possibilities
exist. Hexagonal cells can also be used for this processing. In these cells, data propagate in
three directions (Fig. 8) so as to be used by neighbouring ones (Fig. 9).

Conceiving systolic networks depends on the problem to be solved and the forced
constraints (minimizing number of cells, data flow...). As a consequence, there is no unique
method on conception. Several methods exist, some using mathematical equations of the
problem to solve, others using problem algorithms. This next section will deal with these
questions.

www.intechopen.com

Systolic Petri Nets 69

ail O azl a2
ci1 —»| bu b o1 —»| bui bz
i
v v an v
t t
0 ax 0 0
0 —»| b '—bcﬂ b |—> 0 —»| bn b
v a1 yai2 v an
—>| b |—> b
(2} 12 o [@_' 0 b1z o @—V
ts t

Fig. 7. Data propagation in a squared network

Caut
bi aj
Aout = Ain
bout = bin
Aout bout Cout = Cin + Ain.bin
Cin

Fig. 8. Elementary hexagonal cell

a1

Fig. 9. Hexagonal systolic network operating cycle

www.intechopen.com

70 Petri Nets: Applications

3. Equation-solving based methods

Among the various approaches done, the three main ones respectively use recurrent
equations, sequential algorithms transformation and fluency graphs.

3.1 Recurrent equations based method

3.1.1 Quinton method

It is based on the use of geometrical domain projection representing the processing to be
done so as to define systolic structures (Quinton, 1983). It has three steps :

- Expressing the problem by a set of uniform recurrent equations on a domain Dc Z

- From this set of equations, defining a temporal function so as to schedule processings

- Defining one or several systolic architectures by applying processing allocation functions
to elementary cells

These functions are determined by the different processing domain projections.

3.1.1.1 Step 1 : Creating recurrent equations
Be Rn, the n-dimension real numbers space, Zn its subset with integer coordinates and DcZn
the processing domain. On each point z from D, a set of equations E(z) is processed :

u1(z) = f(u1(z+61), uz(z+62), ..., Um(z+6m))
ua(2) = u(z+62) ()

Um(z) = .u“m(z+6m)

in which vectors 0; ¢ ©® called dependency vectors are independent from z. They define
which are the values where a point of the domain must take its input values. This system is
uniform since 6; does not depend on z and the couple (D, ®) represents a dependency
graph. Thus, the processing of A and B (2 nxn-matrices) is defined by :

cij = Sum(aik.bij)k=1.n , 1<i<n, 1<j<n

It can be defined by the following uniform recurrent equations system :

c(i,j,k) = a(i,jk-1)+a(i,j-1k).b(i-1,j,k)
a(ij k) = a(ij-1,k) (6)
b(i,j,k) = a(i-1,jk)

Several possibilities to propagate data on i, j and k axis exist. ai, byj and cjj are respectively
independent from j, i and k, the propagation of these 3 parameters can be done following the
(i,j,k) trihedron. The processing domain is the cube defined by D = {(i,j k), 0<i<n, 0<j<n,
0<k<n}. Dependency vectors are 6, = (0, 1, 0) , 6, = (1, 0, 0) , 6. = (0, 0, 1). With n=3,
dependency graph can be represented by the cube on Fig. 10. Each node corresponds to a
processing cell. Links between nodes represent dependency vectors. Other possibilities for
data propagation exist.

www.intechopen.com

Systolic Petri Nets 71

Fig. 10. Dependency domain for matrix product

3.1.1.2 Step 2 : Determining temporal equations

The second step consists in determining all possible time functions for a system of uniform
recurrent equations. A time function ¢ is from DcZr — Zn that gives the processing to
perform at every moment. It must verify the following condition :

If xeD depends on yeD, i.e. if a vector dependency ©; =W exists, then t(x)>t(y).

When D is convex, analysis enables to determine all possible quasi-affine time functions. In
this aim, following definitions are used :

- D is the subset of points with integer coordinates of a convex poyedral D from Rn.

- Sum(pi.Xi)i=1.m is a positive combination of points (xi, ..., x,) from Rnif Vi, p; >0

- Sum(ai.xi)i=1..m 1S a convex combination of (xy, ..., x,) if Sum(cti)i=1.m =1

- s is a summit of D if s can not be expressed as a convex combination of 2 different points of
D

-ris aradius of D if VxeD, VuieR* x+pu;.r €D

- a radius r of D is extremal if it can not be expressed as a positive convex combination of
other radii of D.

-lis aline of D if VxeD, VuieR x+uileD

- if D contains a line, D is called a cylinder

If we limit to convex polyedral domains that are not cylinders, then the set S of summits of
D is unique as well as the set R of D extremal radii. D can then be defined as the subset of
points x from R» with x =y + z, y being a convex combination of summits of S and z a
positive combination of radii of R.

Definition 1. T = (),) is a quasi-affine time function for (D, ©) if V6€®, AT.0 > 1, VreR, AT.r
>0, Vse5, ATs>a

Thus, for the uniform recurrent equations system defining the matrix product, (A,c) time
functions meets the following characteristics :

AT=(A1, Ao, A3) with 21, 21, A3>21and A + A + A3 > 1.

www.intechopen.com

72 Petri Nets: Applications

A possible time function can therefore be defined by AT = (1,1,1), with the following 3 radii
(1,0,0), (0,1,0) and (0,0,1).

3.1.1.3 Step 3 : Creating systolic architecture

Last step of the method consists in applying an allocation function & of the network cells.
This function &=a(x) from D to a finite subset of Zm where m is the dimension of the
resulting systolic network, must verify the following condition (t : time function seen on
3.1.1.2) that guarantees that two processings performed on a same cell are not simultaneous :

VxeD, VyeD, a(x)=a(y) = t(x)#t(y).

Each cell has an input port I(i;) and an output port O(p), associated to each p; , defined in
the system of uniform recurrent equations. I(p;) of cell C; is connected to O(p;) of cell Ci+agi
and O(;) of cell G is connected to I(ni) of cell Ci.gi . Communication time between 2
associated ports is t(6;) time units. For the matrix product previously considered, several
allocation functions can be defined. :

- & =(0,0,1) or (0,1,0) or (1,0,0), respectively corresponding to a(i,j k)=k, a(i,j k)=j, a(i,j,k)=i.
Projection of processing domain in parallel of one of the axis leads to a squared shape
-&=(011) or (1,01) or (1,1,0), respectively corresponding to a(ij k)=j-k, a(ijk)=i-k,
a(i,j,k)=i-j. Projection of processing domain in parallel of the bisector lead to a mixed shape

- & = (1,1,1). Projection of processing domain in parallel of the trihedron bisector lead to a
hexagonal shape.

Li and Wah method (Li & Wah, 1984) is very similar to Quinton, the only difference is the
use of an algorithm describing a set of uniform recurrent equations giving data spatial
distribution, data time propagation and allocation functions for network building.

3.1.2 Mongenet method

The principle of this method lies on 5 steps (Mongenet, 1985) :
- systolic characterization of the problem

- definition of the processing domain

- definition of the generator vectors

— problem representation

— definition of associated systolic nets

3.1.2.1 Systolic characterization of the problem
The statement characterizing a problem must be defined with a system of recurrent
equations in R3 :

yi = £y, al, ..., an)
yi* = v, veR3 (7)
0<ks<b, iel, j€]

in which a1, ..., au are data, I and] are intervals from Z, k being the recurrency index and b
the maximal size of the equations system.

www.intechopen.com

Systolic Petri Nets 73

a4 elements can belong to a simple sequence (si) or to a double sequence (s;), [€L, I'€eL', L
and L' being intervals of Z. In this case, 29 elements are characterized by their indexes which
are defined by a function & depending on i, j and k. The result of the probem is a double
sequence (r3), i€l, je] where r;; can be defined in two ways :

— the result of a recurrency rj = y;P

- 15= g(yi® al, ..., an)

For example, in the case of resolving a linear equation, results are a simple suite y;, , 1<i<n ,
each y; being the result of the following recurrency :

yik*tl = yik + aj 1. X
y0=0 ®)
0<k<n-1, 1<i<n

3.1.2.2 Processing domain
The second step of this method consists in determining the processing domain D associated
to a given problem. This domain is the set of points with integer coordinates corresponding
to elementary processings. It is defined from the equations system defining the problem.
Definition 2. Consider a systolizable problem which recurrent equations are similar to (7)
and defined in R3. The D domain associated to the problem is the union of two subsets Dy
and Do
- D1 is the set of indexes values defining the recurrent equations system. b being a bound
defined by the user, it is defined as D1 = { (i,j,k)cZ3, i€l, je], a<k<b}
- D is defined as :

- if the problem result is (rj) : i€l, je] | rj=yib , then Dy =&

- if the problem result is (ry) : i€l, je] | 1 = q(yi*, al, .., av),

then D={ (i,j,k)cZ3, i€l, je], k=b+1 }

In the case of the MVP defined in (8), Di={ (ik)eZ2 | , 0<k<n-1, 1<i<n} and D, is empty,
since an elementary result y; is equal to a recurrency result..
Definition 3. Systolic specification of a defined problem in R3 from p data families implies
that DcZ? defines the coordinates of elementary processings in the canonical base (b;, bj, by).
For example, concerning the MVP previously defined, D={ (i, k)eZ2 | , 0<k<n-1, 1<i<n}.

3.1.2.3 Generating vectors

Definition 4. Let's consider a problem defined in R3 from p data families, and d a data
family which associated function h, is defined in the problem systolic specification.

yq is called a generating vector associated to the d family, when it is a vector of Z3 which
coordinates are (y; ,yj,yx) in the canonical base BC of the problem, such as :

- for a point (i, j, k) of the D domain, hq4(i, j, k) = ha(i+yi, j+y;, k+yy)

- highest common factor (HCF) is : HCF(y; ,y;j, i) = +1 or -1

This definition of generating vectors is linked to the fact that (i, j, k) and (i+y;, j+y;, k+yy)
points of the domain, use the same occurrence of the d data family.

The choice of yq with coordinates being prime between them enables to limit possible
choices for yg4 and to obtain all points (i+nxy;, j+yj, k+yi), neZ, from any (i, j, k) point of D.
In the case of the matrix-vector product, generating vectors Wy=Y.=¥\=(yy , ya, yx) are
associated to results hy, h, and hy. Generating vectors are as following :

www.intechopen.com

74 Petri Nets: Applications

hy(i,k)=hy(i+y;, k+ty) < i = i+ty; < yi = 0. Moreover, HCF(y;, wi)=+1, thus yi==1.
Generating vector yy can therefore be (0, 1) or (0, -1).

hy(i,k) = i+k. Generating vector ¥, must verify ha(i, k)=h.(i+y;, k+yi) < itk=itk+yityi

< yi = -yx. Moreover, HCF(y;,yi)=+1 or -1, thus W¥,=(1,-1) or (-1,1)

Similar development leads to ‘¥x=(1,0)

3.1.2.4 Problem representation

A representation set is associated to a problem defined in R3. Each representation defines a
scheduling of elementary processings. The temporal order relation between the processing
requires the introduction of a time parameter that evolves in parallel to the recurrency, since
this relation is a total order on every recurrency processings associated to an elementary
processing. We thus call spacetime, the space ET c R3. with orthonormal basis (i, j, t), where
t represents the time axis.

Definition 5. A problem representation in ET is given by :

- the transformation matrix P from the processing domain canonical base to the spacetime
basis -

- the transformation vector V such as V=0'O, where O is the origin of the frame associated
to the canonical basis and O' is the origin of the spacetime frame

Point coordinates in spacetime can there for be expressed from coordinates in the canonical

basis :
(x| i
B[]
1] Fon g ‘. I
] i 1 i X i
_.k I Ry _- i FT
This representation is given by the example of the Matrix Vector Product of Fig. 11.
o >
(y1%, a1, x1) (V1% a2, X2) (v13, als, x3)
(y2!, az1, x1) (y22 ax, x2) (y23, a3, x3)
L(Yal, asi, X1) (3% as2, X2) (y33, as3, X3)

i
Fig. 11. Representation of the Matrix Vector Product in spacetime (t=k)

We call Ry the initial representation of a problem, the one for which there is a coincidence
between the canonical basis and the spacetime basis, i.e. P = I, I being the Identity Matrix,
and V the null vector (O and O' are coinciding). For the MVP example, initial representation
is given on Fig. 11.

These representations show the occurencies of a data at successive instants. Processings can
be done in the same cell or on adjacent cells. In the first case, data makes a systolic network

www.intechopen.com

Systolic Petri Nets 75

made of functional cells in which the data can be put in the cell memory. In the second case,
data circulate in the network from cell to cell.

The representation of the problem in spacetime defines a scheduling for the processing. To
obtain networks with a different order, we apply transformations on the initial
representation Ro. If, after a transformation, data are still processed simultaneously, a new
transformation is applied until the creation of an optimal scheduling. From this
representation a set of systolic networks is determined.

Applying a transformation to a representation consists in modifying the temporal abscissa
of the points. Whatever the representation is, this transformation must not change the n-
uple associated to the invariant points when order and simultaneity of processings is
changed. The only possible transformations are thus those who move the points from the D
domain in parallel to the temporal axis (O', t). For each given representation, D; is the set of
points which have the same temporal abscisse, resulting in segments parallel to (O', i) in
spacetime are obtained.

The transformation to be applied consists in deleting data occurencies simultaneities by
forcing their successive and regular use in all the processings, which implies that the image
of all lines d; by this transformation is also a line in the image representation. For instance,
for the initial representation Ry of the MVP, D straight lines are dotted on Fig. 11. One can
therefore see that occurrencies of data xi, 0<k<n-1 are simultaneously used on each point of
straight line Dy with t = k. Therefore, a transformation can be applied to associate a non
parallel straight line to the (O', i) axis to each D parallel straight line to (O', i).

Two types of transformations can be distinguished leading to different image straight lines :

- Tc for which the image straight line has a slope = +P (Fig. 12a)

- Tq for which the image straight line has a slope = -P (Fig. 12b)

o C(yibai, x1) o (yiZ a, x2) o (yi3, a1z, X3) > .
' (y211 ann, X]) . (y22’ an, X2) l (y23, ans, X3)
¥ (y1l, a1, x1) A (y12 an, x2) .-"':(y13, ais, X3) (a)
i
O (v1!, an, x1) (V1% a1, Xp) ~ (vi®, aa, Xa) >

"."'....(_Y21, az1, X1) ..'i...(yzz, ax, X2) ""-..:(Yz3, a3, X3)
l. (y1l, a11, x1) .."-L(y12, an, X2) _ (y13, a1, x3) (b)
i
Fig. 12. Applying a transformation on the initial representation : (a) Tc, (b) Td

The application of a transformation enables to delete the occurencies use simultaneity of
data, but increases the processing total execution time. For instance, for the initial
representation of Fig. 11, the total execution time is t=n=3 time units, whereas for
representations on Fig. 12, it is t=2.n-1 = 5 time units.

www.intechopen.com

76 Petri Nets: Applications

Concerning the initial representation, one can notice that 2 points of the straight line D;
having the same temporal abscisse have 2 corresponding points on the image straight line
which coordinates differ by 1. It means that two initially simultaneous processings became
successive. After the first transformation, no simultaneity in data occurency use is seen,
since all elementary processings on Dy parallel to (O, i) use different data. Thus, no other
transformation is applied. For the different representations, P (transformation matrices) as
well as V (translation vectors) are :

.l"'—[::.':: and I'[E; for Fig. 12a

F=[:?} and i=([.:] tor Fig. 12b.

3.1.2.5 Determining systolic networks associated to a representation

For a given representation of a problem, the last step consists in determining what is/are the
corresponding systolic network(s). The repartition of processings on each cell of the net has
therefore to be carefully chosen depending on different constraints. An allocation direction
has thus to be defined, as well as a vector with integer coordinates in R3, which direction
determines the different processings that will be performed in a same cell at consecutive
instants. In fact, the direction of allocations can not be chosen orthogonally to the time axis,
since in this case, temporal axis of the different processings would be the same, which
contradicts the definition.

Consider the problem representation of Fig. 12a. By choosing for instance an allocation
direction £=(1, O)pc or &=(1, 1)er and projecting all the processings following this direction
(Fig. 13), the result is the systolic network shown on Fig. 14. This network is made of n=3
cells, each performing 3 recurrency steps. The total execution time is therefore 2n-1 = 5 time
units. If an allocation direction colinear to the time axis is chosen, the network shown on Fig.
15 is then obtained.

O' (vil, a11, x1) V12 a1, X2)

>

21, az1, x1) 22, an, X2)

(v3L, as1, x1) Y32, as, X2) (y33, ass, X3)
‘ Cell 0 Cell 1 Cell 2
i

Fig. 13. Processings projection with &=(1,1)gr

Other networks can be obtained by choosing another value for D; slope. The nature of the
network cells depends on the chosen allocation direction.

Cappello and Steiglitz approach (Capello & Setiglitz, 1983) is close to Mongenet. It differs
from the canonical representation obtained by associating a temporal representation
indexed on the recurrency definition. Each index is associated to a dimension of the

www.intechopen.com

Systolic Petri Nets 77

geometrical space, and each point corresponds to a n-uple of indexes in which recurrency is
defined.

as3 as3
a as2 a as2
13 22. azl a3 a. asi
a1 azi 1.2 azl
aill ail
X3 X2 X1 Y Y Y Y3 Y2 Vi1 Y Y a
p| V1 p V2 p| V3 > p X1 P X2 3 —>
Co C C Co C C
Fig. 14. Systolic network for £&=(1,1)er Fig. 15. Systolic network for £&=(0,1)er

Basic processings are thus directly represented in the functional specifications of the
architecture cells. The different geometrical representations and their corresponding
architectures are then obtained by applying geometrical transformations to the initial
representation.

3.2 Methods using sequential algorithms

Among all methods listed in (Quinton & Robert, 1991), we'll detail a bit more the Moldovan
approach (Moldovan, 1982) that is based on a transformation of sequential algorithms in a
high-level language.

The first step consists in deleting data diffusion in the algorithms by moving in series data to
be diffused. Thus, for (nxn)-matrices product, the sequential algorithm is :

Vi | 1<i<n, Vj | 1<j<n, Vk | 1<k<n, Cnew(i,j)=co1a(ij) + a(ik).b(k,j))

If one loop index on variables a, b and ¢ is missing, data diffusion become obvious. When
pipelining them, corresponding indexes are completed and artificial values are introduced
so that each data has only one use. New algorithm then becomes :

Vi | 1<i<n, Vj | 1<5j<n, Vk | 1<k<n
ai*l(i, k) = ai(i, k)
bi*1(k, j) = bi(k, j)
ek, j)= ck(i,)+ ai(i, k) bi(k,
The algorithm is thus characterized by the set L” of indexes of n overlapped loops. Here,

L3 = { (k,ij) | 1<k<n, 1<i<n, 1<j<n }

which corresponds to the domain associated to the problem.

The second step consists in determining the set of dependency vectors for the algorithm. If
an iteration step characterized by a n-uple of indexes I(t) = {il(t), i2(t), ..., in(t)}jeLr uses a

www.intechopen.com

78 Petri Nets: Applications

data processed by an iteration step characterized by another n-uple of indexes J(t)= { ji(t),
j4(t), ..., jn(t) }eLn, then a dependency vector DE(t) associated to this data is defined :

DE(t) = J(t) - I(t)

Dependency vectors can be constant or depending of L» elements. Thus, for the previous
algorithm, processed data ck(i,j) at the step defined by (i, j, k-1) is used at the step (i, j, k).
This defines a first dependency vector di=(j, j, k) - (i, j, k-1) = (0, 0, 1). In the same way, step
(i, j, k) uses the ai(i, k) data processed at the step (i, j-1, k) as well as the bi(j, k) data processed
at the step (i-1, j, k). The two other dependency vectors of the problem are therefore
de?=(0,1,0) and de3=(1,0,0).

The next step consists in applying on the <Ln, E> structure a monotonous and bijective
transformation T (E is the order imposed by the dependency vectors), defined by :

T:<Ln, E> - <L, Ep>

T is partitionned into :

IT:Lr — L1k, k<n
S:Ln—> LTn'k

k gives the dimension of I1 and S. It is such as the function results in the order Er. Thus, the
k first coordinates of | and Lt" depend on time, whereas the following n-k coordinates are
linked to the algorithm geometrical properties. For obtaining planar results, n-k must be less
or equal than 2.

In the case that the algorithm made of n loops is characterized by n constant dependency
vectors

DE = {dey, dey,... , den}

the transformation T is chosen linear, i.e. [=T .1

If v; is the dependency vector dej after transformation, Vi = T. DE; , the system to solve is
T.DE = A, DE = { vy, v, ..., vn }. Necessary and sufficient conditions for existence of a valid
transformation T for such an algorithm are :

-vi = DEj[q] , ¢jbeing the HCF of the d; elements

- T.DE = A has a solution

- The first non-zero element of v; is positive

Therefore, in our exemple of matrix product, dependency vectors are defined by :

1 0 0
O 1 0O
00 1

L=

A linear transformation T is such as T = A. The first non-zero element of v; being positive, we
consider IT .d; >0 and k =1 in order to size IT and S, with :

www.intechopen.com

Systolic Petri Nets 79

i J'!_. J|L
jr_' 21 'r:.‘ F.'"
(B bl

L]

In this case, I1.de; = t;; > 0 . Thus, we choose for ti;, i=1, ..., 3, the lowest positive values, i.e.
ti1 = ti2 = t13 = 1. S is determined by taking into account that T is bijective and with a matrix
made of integers, i.e. Det(T) =+1 . Among all possible solutions, we can choose :

|) |
'=lo 1 0
0 0 1]

This transformation of the indexes set enables to deduce a systolic network :

- Functions processed by the cells are deduced from the algorithm mathematical
expressions. An algorithm similar to (9) contains instructions executed for each point of Ln.
Cells are thus identical, except for the peripherical ones. When loop processings are too
important, the loop is decomposed in several simple loops. The corresponding network
therefore requires several different cells.

- The network geometry is deduced from function S. Identification number for each cell is
given by S(I) = (jx*1, ..., jn) for IeLn. Interconnections between cells are deduced from the n-
k last components of each dependency vector v; after being transformed :

vp = S(I + DEj) - S(I)
When T is linear :
Ujs = SDE]

For each cell, v vectors indicate the identification number of the cell for the variable
associated to the vector. The network temporal processing is given by :

H:Ln—>ITk

The elementary processing corresponding to IeLn is performed at t=I1(I). The
communication time for a data flow associated to the dependency vector DE; is given by
[1(I+DE;) - IT (I), which is reduced to I1(DE;) when T is linear.

Using the integer k for sizes of ITand S with the lowest possible value, the number of
parallel operations is increased at the expense of cells number. Thus, when considering the
matrix product defined with the following linear transformation :

1 1 1
™=l0 1 0
001

S is defined by :

www.intechopen.com

80 Petri Nets: Applications

"'(i'_“: IlJ ILIHTI;{:_]

i 3
The network is therefore a bidimensional squared network (Fig. 1c).
Data circulation are defined by S.DE;. For the c;; data, dependency vector is

u.-,_-—[lll:}n.a' :1'.:*,—-[:”

Therefore, data remain in cells.

For the ajx data, dependency vector is :
o |
0|=5 de, =(0)

e

2=

ajk circulate horizontally in the network from left to right.
Similarly, we can find :

1
&.ode. =
Ay

and deduce that by circulate vertically in the network from top to bottom.

3.3 Fluency graphs description

In this method proposed by Leiserson and Saxe (Leiserson & Saxe, 1983), a circuit is

formally defined as an oriented graph G = (V, U) which summits represent the circuit

functional elements. A particular summit represent the host structure so that the circuit can

communicate with its environment. Each summit v of G has a weight d(v) representing the

related cell time cycle. Each arc e = (v, v') from U has an integer weight w(e) which represents

the number of registers that a data must cross to go from v to v".

Systolic circuits are those for which every arc has at least one related register and their

synchroniszation can be done with a global clock, with a time cycle equal to Max(d(v)).

The transformation which consists in removing a register on each arc entering a cell, and to

add another on each arc going out of this cell does not change the behaviour of the cell

concerning its neighborhood.

By the way, one can check that such transformations remain invariant the number of

registers on very elementary circuit.

Consequently, a necessary condition for these transformations leading to a systolic circuit, is

that on every elementary circuit of the initial graph, the number of registers is higher or

equal to the number of arcs. Leiserson and Saxe also proved this condition is sufficient.

Systolic architecture condition is therefore made in 3 steps :

— defining a simple network w in which results accumulate at every time signal along
paths with no registers

www.intechopen.com

Systolic Petri Nets 81

— determining the lowest integer k. Thus, the resulting newtork w; obtained from w by
multiplying by k the weights of all arcs is systolizable. wy has the same external
behaviour than w, with a speed divided by k.

— systolizing wy using the previous transformations

This methodology is interesting to define a systolic architecture from an architecture with

combinatory logic propagating in cascade. Main drawback is that the resulting network

often consists of cells activated one time per k time signals. This means the parallelism is
limited and execution time is lenghtened.

Other methods use these graphs :

- Gannon (Gannon, 1982) uses operator vectors to obtain a functional description of an

algorithm. Global functional specificities are viewed as a fluency graph depending on used

functions and operators properties, represented as a systolic architecture

- Kung (Kung, 1984) uses fluency graphs to represent an algorithm. The setting up of this

method requires to choose the operational basic modules corresponding to the functional

description of the architecture cells.

4. Method based on Petri Nets

In previously presented methods, the thought process can almost be always defined in three

steps :

- rewriting of problem equations as uniform recurrent equations

— defining temporal functions specifying processings scheduling in function of data
propagation speed

— defining systolic architectures by application of processings allocation functions to
processors

To become free from these difficulties that may appear in complex cases and in the

perspective of a method enabling automatic synthesis of systolic networks, a different

approach has been developped from Architectural Petri Nets (Abellard et al., 2007)

(Abellard & Abellard, 2008) with three phases :

— constitution of a Petri Net basic network depending on the processing to perform

— making of the Petri Net in a systolic shape (linear, orthogonal or hexagonal) defining
data propagation

4.1 Architectural Petri Nets

To take into account sequential and parallel parts of an algorithm, an extention of Data Flow
Petri Nets (DFPN) (Almhana, 1983) has been developped : Architectural Petri Nets (APN),
using Data Flow and Control Flow Petri Nets in one model. In fact Petri Nets showed their
efficiency to model and specify parallel processings and on various applications, including
hardware/software codesign (Barreto et al., 2008) (Eles et al., 1996) (Gomes et al., 2005)
(Maciel et al., 1999) and real-time embedded systems modeling and development (Cortés et
al., 2003) (Huang & Liang, 2003) (Hsiung et al., 2004) (Sgroi et al., 1999). However, they may
be insufficient to reach the implementation aim when available hardware is either limited in
resources or not fully adequate to a particular problem. Hence, APN have been designed to
limit the number of required hardware resources while taking advantage of the chip
performances so that the importance of execution time lengthening may be non problematic

www.intechopen.com

82 Petri Nets: Applications

(Abellard, 2005). Their goal is on the one hand to model a complete algorithm, and on the
other hand, to design the interface with the environment. Thus, in addition with operators
used for various arithmetic and logic processing, other have been defined for the
Composition and the Decomposition in parallel of data vectors.

4.1.1 Defactorized operators

4.1.1.1 Compose
It proceeds to the ordered regrouping of d input data T’; to Tq of a same type into an output
vector [Ty ... T'q] (Fig. 16).

CO(T’1, ceey T’d) g [T’1, ey T’d]

g T Ta

[T)..T'd T

De Du

T T2 - Ta T d T
Fig. 16. Operators : Compose (left), Decompose (middle) and Duplicate (right)

4.1.1.2 Decompose
It proceeds to the decomposition of a vector [T"1...T"q] into its d elements T’; to T'q (Fig. 16).

De([T'1..Td]) > T4, ..., T'a

4.1.1.3 Duplicate
It proceeds to the duplication of input data to d subnets as in Data Flow Petri Nets, different
operators can not use the same set of data (Fig. 16).

4.1.1.4 Example of a Matrix Vector Product

An example of application of these operators is given on Fig. 17 with a MVP. One can easily
see that the more important are the sizes of matrix and vector, the more important is the
number of operators in the Net (and consequently the required hardware ressources).

www.intechopen.com

Systolic Petri Nets 83

2x1 23 3x1
Fig. 17. Data Flow Petri Net of a MVP

The use of classic DFPN leads to an optimal solution as regards the execution time, thanks
to an unlimited quantity of resources. However, a problem may appear. In fact, although
these operations are simple taken separately, their combination may require relatively
important amount of hardware resources, depending on the data type of the elements, and
on the input matrix and vector sizes. We therefore have to optimize the number of cells
prior to execution time. This is not a major drawback with a programmable component
which has short execution times for real time controls. In order to limit as more as possible
the resources quantity, we defined the Architectural Petri Nets (APN), that unify in a unique
model Data Flow and Control Flow.

4.1.2 Factorization concept

The decomposition of an algorithm modelled with DFPN into a set of operations leads to the
repetition of elementary identical operations on different data. So, it may be interesting to
replace the repetitive operations by a unique equivalent subnet in which input data are
enumerated and output data are sequentially produced. This leads us to define the concept
of factorized operator which represents a set of identical operations processing
differentsequential data.

Each factorized operator is associated to a factorization frontier splitting 2 zones : a slow one
and a fast one. When the operations of slow zone are executed one time, those of the fast
zone are executed n times during the same lapse of time.

Definition 6. A T-type element is represented by a vector of d1 elements, all of T’-type. Each
T type element may be also a vector of d, T"’-type elements, and so on.

Definition 7. A Factorized Data Flow Petri Net (FDFPN) is a 2-uple (R, F) in which R is a
DFPN and F a set of factorization frontiers F = {FF; , FF, ... FF}.

www.intechopen.com

84 Petri Nets: Applications

4.1.3 Factorized operators

The data enumeration needs to use a counter for each operator. An example is given on Fig.
18. Various factorized operators that are used in our descriptions are described in next
sections.

M's= (0,1,0,3,0,0,0)
M= (1,1,0,3,0,0,0)
M= (0,0,0,3,1,0,0)
M= (0,01,211.0)
M's=(0,02,1,1,2,0)
M's= (0,03,0,1,3,0)
M's= (0.1,0,3.0,3.1)

Fig. 18. Counter from 0 to n-1 (here n=3)

4.1.3.1 Separate

It is identified by Se and it proceeds to the factorization of a Data Flow in an input vector
form [T’1...T"q] by enumerating the elements T’; to T’q. A change of the input data value in
the operator corresponds to d changes of the output data value. The Separate operator
allows to go through a factorization frontier by increasing the data speed : the down speed
of the input data of Separate is d times greater than the upper speed of output data. d
output data (fast side) correspond to one input data (slow side) as the result of the input
data elements enumeration synchronized with an internal counter (which sole p’p and p’s
places are represented for graphic simplification).

Thus, a factorization frontier FF defined by a Separate operator dissociates the slow side
from the fast side (Fig. 19a). A graphic simplified representation, where places coming from
counter are not represented, is adopted on Fig. 19b. In a FDFPN, the operator Separate
corresponds to the factorized equivalent of Decompose defined in 4.1.1.2.

s Lo B [~y
slow t
| 3 Tt P Se
fast L
P T
(b)

Fig. 19. Separate operator

4.1.3.2 Attach

It is identified by At and it proceeds to the factorization of d input data flows T’; by
collecting them under an output vector form [T"1...T"4] (Fig. 20a with p’o and p’s coming from
the d-counter, and graphic simplified representation on Fig. 20b). d changes of input data

www.intechopen.com

Systolic Petri Nets 85

values in the Attach operator correspond to one change of the output data values. In a

FDFPN, the operator Separate corresponds to the factorized equivalent of Compose defined
in4.1.1.1.

Fig. 20. Attach operator

4.1.3.3 lterate

It is identified by It and it proceeds to the iteration of a subnet which has s as input and e as
output. The operator provides the specification of connexions between repetitive subnets,
and appears in the FDFPN as a cycle through the “It” operator. On Fig. 21a, p’o and p’s come
from the previously described d-counter, produced by a control operator which will be
defined in section 4. (Fig. 21b being the simplified representation of the operator). in :
initializing step ; fi : final step (counting completed)

Fig. 21. Iterate operator

4.1.3.4 Diffuse
This operator provides d times in output the repetition of an input data. Diffuse (Di) is a
factorized equivalent to the Duplicate function defined in 3.2.3.3. (Fig. 22).

www.intechopen.com

86 Petri Nets: Applications

(a)

Fig. 22. Diffuse operator

4.1.4 Example of a Matrix Vector Product

From the example of previous MVP, the corresponding FDFPN is given on Fig. 23a.
Factorization enables to limit the number of operators in the architecture - and therefore the
number of logic elements required - since data are processed sequentially. As for the
validation places that enables to fire the net transitions, they come from a Control Flow Petri
Nets (CFPN), which is described in the next paragraph (Fig. 23b).

Given the algorithm specification, i.e. the FDFPN, control generation of its implementation
is deduced from data production and consumption relations, and neighborhood relation
between all FF. Hence the generation of control signals equations that can be modelled with
Petri Nets, by connecting control units related to each FF. Control synthesis of a hardware
implementation consists in producing of validation and initialization signals for needed
counters. Control generation of hardware implementation corresponding to the algorithm
specification described by its FDFPN is thus modelled by CFPN.

Fig. 23. FDFPN description of a MVP

www.intechopen.com

Systolic Petri Nets 87

4.1.5 Definition of Control Flow Petri Nets
A CFPN is a 3-tuple (R, F, Pc) in which : R is a 2-part places Petri Net, F is a set of
factorization frontiers, Pc is a set of control places.

4.1.5.1 Control synthesis

Five steps are necessary :

- Design of a FDFPN.

- Design of the PN representing neighborhood relations between frontiers.

- Definition of neighborhood, production and consumption relations using this Petri Net.
- Generation of signal control equations.

- Modelling using CFPN by connecting unit controls related to each FF.

4.1.5.2 Control units

In a sequential circuit containing registers, each FF has relations on its both sides (slow and
fast). Relations between request and acknowledgment signals, up and down, for both slow
and fast sides, provide the design of the control unit. It is composed of a d-counter and
additional logic which generate communication protocols, cpt (counter value) and val
(validation signal) for transitions firing.

Functions rules : If the control unit (CU) receives aupper request (ur= 1) and the down
acknowledge is finished (da=0), it validates the data transfer (ua=1) and sends a request to
the next operator (dr=1) (Fig. 24). If a new request is presented while da is not yet activated,
then CU does not validate a new data transfer which is left pending. CU controls
bidirectional data flow.

Fig. 24. Control Unit representation

4.2 Example of the Matrix Product

Once these operators have been defined, they can now be used in the Petri Net description
of a systolic array, as it is developped in the following example. Be C = A.B a processing to
perform, with A, B and C squared matrixes of the same size (n=2 to simplify). Processings to
perform are :

¢i,=Sum(a; k.bx)k=1..2 (10)

which require eight operators for multiplication and to propagate ai, byj and c;; (Fig. 25).

www.intechopen.com

88 Petri Nets: Applications

olale f"*\ﬁg jiolels} Q%&EL & T’ngfﬁég 58
él?/ O */1 T ¢ Oy . s
AEARY Al gh e

I
i
4
“
i
il
il
i
J '-'E
1
1
[
i
1
1
i
i
1
"
1
i
‘1I"
1
i
hm

“n iz “n n

21} h'j_ll € :r_:__ ¥ LN Il b, C ! l"_zt
(‘{t%@ | QOO |QOC
(¥ : E 3 W
iL J jlq‘\ 'i';). B
S rE - (5 =r

a b Lo 1
] o Wy by F_j‘g i |1
’ “1?” Q%“ 5‘%9 ' 55 ’
6 ¢ ;* !

= ‘_ .- }
i I 1 r}
] i i |
) ; T b=

Fig. 28. Fourth step of data propagation

In the first step (Fig. 25), operator 1 receives a1, bi1 and ci1. It performs cii=an .bi1 and
propagates the three data to operators 3, 5 and 2. In the second step (Fig. 26), operator 2
receives a2 et by, operator 3 receives by and cip and operator 5 receives ax; and co1. Operator
2 performs : ci1 = air.bi1 + ain.ba. Operator 3 performs aii.biz and operator 5 processes

www.intechopen.com

Systolic Petri Nets 89

az1.bi1. These operators are respectively connected to operators 4 and 7 on the one hand, 6
and 7 on the other hand.

In the third step (Fig. 27), operator 4 receives by, operator 6 receives c» and operator 7
receives az. These 3 operators are linked to operator 8. They perform : ci12 = ai1.biz + az.b2
and c21 = az1.b11 + ax.bai1. In the final step (Fig. 28), operator 8 performs c2; = az1.bi2 + ax.ba.
By propagating data in the 3 directions, the processing domain becomes totally defined :

D ={(ijk) | 1<i<N, 15j<N, 1<k<N }

Classic projections are :

- II=(11,0) or (1,0,1) or (0,1,1) which results in the linear network in Fig. 1a.

- I1=(0,0,1) or (0,1,0) or (1,0,0) which results in the squared network in Fig. 1b.

— I1=(1,1,1) which results in the hexagonal network in Fig. 1c.

For example, with the first solution, the result is as in Fig. 1. Each cell is made of a
multiplier/adder with accumulation (Fig. 29).

Fig. 29. Squared network of matrix product C=A.B

The Architectural Petri Net defining the complete systolic network is obtained by adding
Decompose and Compose operators in input and output so as to perform the interface with
the environment (Fig. 30). In order to be free from the related hardware problems that can
occur to retrieve results in the cells, the hexagonal structure can also be used. In this type of
network, a, b and c circulate in 3 directions (Fig. 31). For instance, with a 3x3 matrix product,
the network operating cycle is as following :

1 - Network is reset. a1, b11 and c11 come in input respectively of operators os, 09 and o0;.

2 - a11, bi1 and cy11 are propagated to o015, 017 and o013.

3 - a1, bin and c¢11 come as input of 019 in which c11 = a11.b11 is done. a1z, 421, bz, b21, c12 and ¢
come in input respectively of operators o4, 06, 0s, 010, 02 and o12.

4 - ¢11, a2 and by come as input of o at the same time. c11 = a11.b11+a12.b21 is done. Other data
are propagated.

5 - c11, a13 and b3 come as input of o7 at the same time. c11= a11.b11+a12.b21+a13.b31 Other data
are propagated.

Processings are done similarly for other terms until the matrix product has been completed.

www.intechopen.com

90 Petri Nets: Applications

O A

4 0Oanan
il

o1 0axlaz 0
»

OCo
Q O
Q Co
O C
i ||'-|“ L \
._r=[":'"|| ”I_‘) i t=[%n P 0 D] {{:[h" Bisl B by by, C= €1 Cp
sy b a, 4y 0 by by 0 by T
G 0| '

Fig. 30. Petri Net of the systolic network for the matrix product

www.intechopen.com

Systolic Petri Nets 91

e

Fig. 31. Petri Net description of hexagonal systolic network for matrix product

5. Conclusion

The main characteristics of currently available integrated circuits give the possibility to
make massively parallel systems, as long as the processings « volume » are given priority to
data transfer. Systolic model is a powerful tool for conceiving specialized networks, using
identical elementary cells locally interconnected. Each cell receives data coming from
neighbourhing cells, performs a simple processing, then transmits the results to
neighbourhing cells after a time cycle. Only cells on the network frontier communicate with
the environment. Their conception is often based on methods using recurrent equations, or
on sequential algorithms or fluency graphs. It can be efficiently developped thanks to a tool
completely formalized, lying on a strong mathematical basis, i.e. Petri Nets, and their
Architectural extension. Moreover, this model enables to do their synthesis and to ease their
implementation on reprogrammable components.

www.intechopen.com

92 Petri Nets: Applications

6. References

Abellard, A., (2005). Architectural Petri Nets : Basics concepts, methodology and examples
of application, Proceedings of IEEE International Conference on Systems, Man and
Cybernetics, pp. 2037-2042, Waikoloa, HI, USA, October 2005, IEEE.

Abellard, A.; Abellard, P. & Gorce, P. (2007). Architectural Petri Nets : Basics concepts,
methodology and examples of application, Proceedings of IEEE/ASME AIM
International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland,
September 2007, IEEE.

Abellard, A. & Abellard, P. (2008). A Design Methodology of Systolic Architectures Based
on a Petri Net Extension. Application to a Stereovision Hardware/Software
Processing Improvement, Proceedings of ICSEA - International Conference on Software
Engineering Advances, pp. 77-82, Sliema, Malta, October 2008, IARIA.

Almbhana, J. (1983). Modélisation par réseaux de Petri a flux de données. Application a la syntheése
de l'opérateur de Riccati rapide. PhD Thesis, Université d”Aix-Marseille III, France.

Barreto, R. ; Maciel, P. ; Tavares, E. ; Oliveira, M. & Lima R. (2008), A time Petri Net-based
method for embedded hard real-time software synthesis, Design Automation for
Embedded Systems, Vol. 12, pp. 31-62, ISSN 0929-5585 (Print) 1572-8080 (Online),
Springer.

Blume, H. ; von Sydow, T. & Noll, T.G. (2006), A case study for the application of
deterministic and stochastic Petri Nets in the SoC communication domain, Journal
of VLSI Signal Processing, Vol. 43, pp. 223-233, ISSN 0922-5773, Springer.

Cortés, L.A. ; Eles, P. & Peng, Z. (2003), Modeling and formal verification of embedded
systems based on a Petri net representation, Journal of Systems Architecture, Vol. 49,
pp. 571-598, ISSN 1383-7621, Elsevier.

Eles, P. ; Kuchcinski, K. & Peng, Z. (1996), Synthesis of systems specified as interacting
VHDL processes, Integration-The VLSI Journal, Vol. 21, No. 1-2, pp. 113-138, ISSN
0167-9260, Elsevier.

Gomes, L. ; Barros,]J.P. & Costa, A. (2005), Structuring Mechanisms in Petri Net Models:
From specification to FPGA based implementations. In: Adamski, M. ; Karatkevich,
A. & Wegrzyn, M. (Eds.), Design of embedded control systems, pp. 153-166, ISBN 978-
0-387-23630-8, Springer.

Ghavami, B. & Pedram H. (2009), High performance asynchronous design flow using a
novel static performance analysis method, Computers and Electrical Engineering, in
press, Elsevier.

Hsiung, P.A. & Gau, C.H. (2002), Formal synthesis of real-time embedded software by time-
memory scheduling of colored time Petri Nets, Electronic Notes in Theoretical
Computer Science, Vol. 65, No. 6, pp. 140-159, Elsevier.

Hsiung, P.A. ; Lin, C.Y. & Lee, T.Y. (2004), Quasi-dynamic scheduling for the synthesis of
real-time embedded software with local and global deadlines, Lecture Notes in
Computer Science, Vol. 2968, pp. 229-243, ISBN 3-540-21974-9, Springer-Verlag.

Huang, C.C. & Liang W.Y. (2003), Object-oriented development of the embedded system
based on Petri-nets, Computer Standards & Interfaces, Vol. 26, pp. 187-203, Elsevier.

Maciel, P. ; Barros, E. & Rosenstiel, W. (1999), A Petri Net model for hardware/software
codesign, Design Automation for Embedded Systems, Vol. 4, No. 4, pp. 243-310,
Springer.

www.intechopen.com

Systolic Petri Nets 93

Oliveira, M. ; Maciel, P. ; Barreto, S. & Carvalho, F. (2004), Towards a software power cost
analysis framework using colored Petri Net, Lecture Notes in Computer Science, pp.
362-371, ISBN 3-540-23095-5, Springer-Verlag.

Sgroi, M. ; Lavagno, L. ; Watanabe, Y. & Sangiovanni-Vincentelli, A. (1999) Synthesis of
embedded software Using free-choice Petri Nets, Proceedings of the 36th annual
ACMY/IEEE Design Automation Conference, pp. 805-810, ISBN 1-58133-109-7, New
Orleans, LA, USA, June 1999, IEEE.

Strbac, P. ; Tuba, M. & Simian, D. (2009) Hierarchical model of a systolic array for solving
differential equations implemented as an upgraded Petri Net, WSEAS Transactions
on Systems, Vol. 8, No. 1, pp. 12-21, WSEAS.

Capello, P.R. & Steiglitz, K. (1983). Unifying VLSI array designs with geometric
transformations, Proceedings of International Conference on Parallel Processing, pp. 448-
457, Bellaire, USA.

Castro-Pareja, C.R ; Sagadeesh,].M. : Venugopal, R. & Shekha, R. (2004), FPGA based 3D
median filtering using word-parallel systolic arrays, Proceedings of IEEE ISCAS
International Symposium on Circuits and Systems, Vol. 3, pp. 157-160, Vancouver,
Canada, May 2004, IEEE.

Gannon, D. (1982). Pipelining array computation for MIMD parallelism. Proceedings of
International Conference on Parallel Processing, Columbus, OH, USA, 1982.

Jackson, P.A. ; Chan, C.P. ; Scalera, J.E. ; Rader, CM. & Vai, M.M. (2004). A Systolic FFT
Architecture for Real Time FPGA Systems, Proceedings of HPEC - Eighth Annual
Workshop on High Performance Embedded Computing, Lexington, MA, USA, 2004.

Johnson, K.T. & Hurson, A.R. (1993). General purpose systolic arrays. Computer, Vol.26,
No.1, pp. 20-31.

Kung, H.T. (1982). Why systolic architectures ? Computer, Vol.15, pp.37-46.

Kung, H.T. (1988), Systolic communications, Proceedings of International Symposium on
Computer Architectures, San Diego, CA, USA, 1988, IEEE.

Kung, S.Y. (1984), On supercomputing with systolic/ wavefront array processors, Proceedings
of the IEEE, Vol.72, pp. 867-884.

Lee,]JJ. & Song, G.Y (2002), Implementation of the Systolic Array for Dynamic
Programming, Proceedings of ICITA International Conference on Information Technology
and Applications, ISBN 1-86467-114-9, Bathurst, Australia, 2002, IEEE.

Lee, J.J. & Song, G.Y (2003), Implementation of the super systolic array for convolution,
Proceedings of ASP-DAC Asia and South Pacific Design Automation Conference, pp. 491-
494, ISBN 0-7803-7659-5, Kitakyushu, Japan, January 2003, IEEE.

Lee, J.J. & Song, G.Y (2004), Implementation of a bit-level super systolic FIR filter,
Proceedings of IEEE AP-ASIC - Asia Pacific Conference on Advanced Systems Integrated
Circuit, pp. 206-209, ISBN 0-7803-8637-X, Fukuoka, Japan, August 2004, IEEE.

Leiserson, C.E. & Saxe,].B (1983), Optimizing synchronous circuitry by retiming, Proceedings
of 3D CalTech Conference on VLSI, pp. 87-116, 1983.

Li, G.J. & Wah, BW (1984), The design of optimal systolic arrays, IEEE Transactions on
Computers, Vol.33, No.10, 1984.

Lim, H. & Swartzlander, E.E (1996a), Multidimensional systolic arrays for multidimensional
DFTs, Proceedings of the IEEE International Conference on Acoustic, Speech and Signal
Processing, Vol.6, pp. 3276-3279, Atlanta, GA, USA, May 1996, IEEE.

www.intechopen.com

94 Petri Nets: Applications

Lim, H. & Swartzlander, E.E (1996b), Efficient systolic arrays for FFT algorithms, Proceedings
of the 29th Asilomar Conf. Signals, Systems and Computers, Vol.1, pp. 141-145, ISBN 0-
8186-7646-9, Pacific Grove, CA, USA, 1996, IEEE.

Lim, H. & Swartzlander, E.E (1999), Multidimensional systolic arrays for the implementation
of Discrete Fourier Transform, IEEE Transactions on Signal Processing, Vol.47, No.5,
pp. 1359-1370.

Mihu, 1.Z.; Brad, R. & Breazu, M. (2001), Specifications and FPGA implementation of a
systolic Hopfield-type associative memory, Proceedings of the International Conference
on Neural Networks, Vol.1, pp. 228-233, Washington, DC, USA, 2001.

Moldovan, D.I. (1982), On the analysis of synthesis VLSI algorithms, IEEE Transactions on
Computer, Vol.31, No.11, pp. 1121-1126.

Mongenet, C. (1985). Une méthode de conception d’algorithmes systoliques, résultats théoriques et
réalisation. PhD Thesis, Université de Nancy, France.

Nash, J.G. (2002), Automatic latency optimal design of FPGA based systolic arrays,
Proceedings of the 10th IEEE Symposium on Field Programmable Custom Computing
Machines, pp. 299-300, Napa, CA, USA.

Nash, J.G. (2005), Computationally Efficient Systolic Architecture for Computing the
Discrete Fourier Transform, IEEE Transactions on Signal Processing, pp. 4640-4651,
Vol. 53, No. 12, ISSN 1053587X.

Quinton, P. (1983). The systematic design of systolic arrays, Report IRISA 193, Rennes,
France.

Quinton, P. & Robert, Y. (1991). Systolic algorithms & architectures, Ed. Prentice Hall, ISBN
0138807906, London.

Sousa, L.A. (1998), Bidirectional systolic arrays for digital recursive filters, Proceedings of the
International Conference on Electronics, Circuits and Systems, Vol.3, pp. 451-502, ISBN
0-7803-5008-1, Lisboa, Portugal, September 1998, IEEE.

Yang, Y.; Zhao, W. & Inoue, Y. (2005), High performance systolic arrays for band matrix
multiplication, Proceedings of the IEEE International Symposium on Circuits and
Systems, Vol.2, pp. 1130-1133, ISBN 0-7803-8834-8, Kobe, Japan, May 2005, IEEE.

www.intechopen.com

