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Abstract 
 

Statistical distributions in the production of information are most often studied in the 

framework of Lotkaian informetrics. In this article, we recall some results of basic theory of 

Lotkaian informetrics, then we transpose methods (Theorem1) applied to Lotkaian distributions 

by Leo Egghe (Theorem 2) to the exponential distributions (Theorem 3, Theorem 4). We give 

examples and compare the results (Theorem 5). Finally, we propose to widen the problem using 

the concept of exponential informetric process (Theorem 6). 
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1. Introduction 

 
Many phenomena studied in informetrics, concerning the production or use of information, can 

be represented by a triple (Source, Production function, Items) called Information Production 

Process (IPP) (Egghe, 1990). This consists of a set of sources S, a set of items I, T 

(respectively A ) denotes the total number of sources, respectively the total number of items, and 

finally a function of production or use that quantifies the production of the items by the sources. 

There are several methods for representing these phenomena. In this article, the theory is 

developed with a size-frequency function f , the most usual form for quantifying this 

production. 

 


],1[:
max

If , )( jf describes the density of sources with item density j  (in the discrete 

setting )( jf  indicates the number of sources that have produced j items). We assume f is 

continuous. 

max
I  indicates the maximal item per source density. 

The following two equalities allow us to calculate T and A . 
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1
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I

djjfT         (1.1)  



max

1

)(.

I

djjfjA        (1.2) 

 

Of course it may happen that T  and A  are infinite if 
max

I  is infinite. If T  is finite we have the 

following inequality: AT 0  .We denote
T

A
 , the average number of items by source. We 

have, 1 . 
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In practice, the production function of an IPP has similar characteristics in very diverse 

situations of production or use of information:  

 - Authors (Sources) write articles (Items) 

 - Words in a text (Sources) produce occurrences of words in the text (Items) 

 - Web pages (Sources) contain links (Items) 

 - Web sites (Sources) are visited (Items) 

 - Requests (Sources) through a search engine are sent by users (Items). 

 

In all quoted examples, if we quantify the production of the items by the sources with a  size-

frequency function, this one is decreasing with a long tail and a gap between a high number of 

sources producing few items and a small number of sources producing a lot. In practice, when 

one determines a best-fitting curve, we must truncate the distribution because for high 

frequencies the number of items produced is very low. This characteristic results in the standard 

deviation often being extremely high compared with the average and is a poor indicator. The 

statistical distribution most used in informetrics is the inverse power function, also called 

Lotkaian informetric distribution. This distribution is unimodal; it models the information 

production processes in  many of the quoted examples . At present, with Internet, there are 

many examples for which the data resulting from the Web has been adjusted by such models 

(Bilke & Peterson, 2001). The GIGP (Zero-truncated Generalized Inverse Gaussian-Poisson) 

model known and tested over a long time (Burrel & Fenton, 1993) is also used to day to adjust 

some of this data (Ajiferuke & Wolfram, 2004). 

 

2. Lotkaian informetric distribution  
 

With the preceding notations, a Lotkaian informetric distribution is given:  


],1[:
max

If , 

 where  


j

C
jf )(  , 0C  and 1       (2.1) 

We will limit ourselves to the case where 1 , meaning where T (number of sources) is 

finite and where the corresponding probability density function is: 



 jjf ).1()(  1 , if 


max

I . Moreover, we know that A  is finite if 2 . More generally f  has moments of 

order n if n . 

 

The mathematical properties of these functions (Haitun, 1982) have been to great extent 

studied. They have often been opposed to the functions modeling Gaussian processes. They 

have been the subject of a recent work of informetrics (Egghe, 2005), which contains many 

results. This work has the merit among others of unifying all the work done concerning 

empirical applications, Lotka, Bradford, Zipf, Mandelbrot, with the mathematical theory of IPP, 

choosing, as central distribution, the Lotkaian distributions. The coefficient   characterizes the 

gap between strongly productive sources and those that produce little. Many works (Bookstein, 

1990a, Bookstein, 1990b) have shown the strength of the law of Lotka (Lotka, 1926). In 

addition, the value 2  plays a key role since we know, according to whether   is smaller 

or greater than 2, that the representation of Leimkuhler (Rousseau, 1988) has or does not have a 

turning point; in informetrics the term “Groos droop” (Groos,1967) is often used. 
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Finally, these distributions are scale free. A function f  is called scale-free if, for every positive 

constant C, there is a positive constant D such that )()( xDfCxf   for all x in the domain of f  

(Egghe, 2005 p 27). This property is important when frequencies are observed. It allows us to 

change scale without changing model. In the main, it justifies the choice of Leo Egghe in his 

work that we have just quoted. If we impose the scale free property, it implies that some 

decreasing functions, such as the decreasing exponential function one, are not allowed. 

However, the phenomena of obsolescence and growth of quotations on a subject of search in 

scientific literature (Egghe, 1993) are modeled by exponential processes. 

In addition, the often ignored result of Naranan (Naranan, 1971), shows that distributions of 

Lotkaian type can be deduced under certain conditions from an exponential growth of sources 

and the number of items produced by these sources. It gives the exponential functions an 

importance that we cannot neglect. In the previously quoted examples, the temporal parameter 

plays the role of variable. 

Finally the law of geometrical probability, which is the discrete version of the exponential law, 

is often used as a rough approximation for modeling the processes of commands or library 

circulation data  (Bagust, 1983). 

Thus, all these reasons lead us to adopt a procedure similar to that of Leo Egghe (Egghe, 2005) 

and to find a mathematical result for the exponential distributions, which is a necessary 

condition of the same type as Lotkaian distributions. 

 

3. Reminder of some results of basic theory of Lotkaian informetrics 
 

There is a lot of statistical work that consists of verifying the statistical regularities in the 

variety of examples mentioned in the introduction, and making fittings. Lotkaian distributions 

play an important role here. However, to my knowledge, few bibliometric researchers use the 

mathematical theorem, certainly recent, which we remind is a necessary condition for the 

production of sources covering the items produced. This theorem plays a key role in this article. 
 

Theorem 1  (Egghe 2005 p 111) 

The following assertions are equivalent, given 0 TA  

 

(i) There exists a function 


 [,1[:f and a finite number 
max

I >1 such that:  
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1
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I

djjfT    

djjfjA

I



max

1

)(.  

(ii) There exists a function 


 [,1[:*f  such that 










1

1

)(*

)(*.

djjf

djjfj

  

Moreover if (i) or (ii) holds  we have, necessarily that fDf .* with 0D , a constant. 

 

We refer readers interested in the demonstration to the reference quoted. What is interesting for 

us here in the theorem is the implication )()( iii  . 
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Leo Egghe applies this theorem to Lotkaian informetric distributions. 

 
Theorem 2 (Egghe 2004) 

 

Let  AT0  be given. Let 1 and a number .1
max

I  

If maxI is infinite 

(i) If the inverse power function as in (2.1) satisfies (1.1) and (1.2) if we have  

1

12









          (3.1) 

and 

1



A
C         (3.2)  

which implies 2  if A  .       

 

If maxI is finite (the general case) 

 

(ii) If 2  then there always exists a number 1max I such that (2.1) satisfies (1.1) and (1.2). 

 

(iii) If 2 the conclusion (i) is valid if and only if 

     
2

1








          (3.3) 

 

We will follow exactly the same procedure for the exponential functions (Theorem 3 and 

Theorem 4), then compare the results (Theorem 5). 
 

4. Exponential distribution 

 
4.1 Theoretical results  

 

With the preceding notations, an exponential function : 


],1[:
max

Ig  is given where  

 
)1(

.)(



j

eCjg


 with 0C and 0      (4.1) 

 

We can also write it in an equivalent form:  
j

aCjg


 .)(  with 0C  and 1a  

 

We will use the first form here. The corresponding probability density function is :  

    )1.(
.)(




j
ejg


 with 0  and 

max
I  

 

As for the power function, g  has as a maximum value for 1. 

 

Unlike the inverse power function, a decreasing exponential function has moments  of order n  

whatever the n positive.  

 

Lemma 
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If we call 
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Proof 

An integration by part gives: )1(.
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More particularly we obtain: 

 
2

11
)1(


A        (4.2) 

□ 

 

 

Problem 

What are the conditions, given A and T ( AT 0 ), for the existence of an exponential function 

g as in (4.1) which verifies:   

xma xma
I I

AdjjgjandTdjjg

1 1

)(.)( ? 

We separate the study into two cases. 

 

1) 
max

I is infinite 

 

Theorem 3 

Let AT 0  be given. The exponential function defined in (4.1) satisfies the following 

conditions:  

 

 

 



1 1

)(.;)( AdjjgjTdjjg  

if  

 
1

1










TA

T
        (4.3) 

TA

T
C




2

         (4.4) 

 

Proof 

 

By solving the integrals above (see (4.2)), we obtain:  
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1

)1(
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11

(..
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2
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CdjejC

j  

. 

 

We then deduce the desired results ((4.3), (4.4)) by  solving the two equations: 



C
T    

and 

     
2

.



 CC
A


 . 

 

 

As for a Lotkaian distribution,   only depends on  . When fitting, the formulas ((4.3),(4.4) give 

a rough estimate of the parameters of the exponential function (4.1). 

 

□ 

 

2) 
max

I is finite 

 

Theorem 4 

Let 0 TA be given. Thus 0 , there is still 1
max

I  finite and an exponential function defined 

by (4.1) verifying the two conditions:  

  

max

1 1

)(.)(

I I
xma

AdjjgjandTdjjg  

 if the inequality  




1
1           (4.5) 

holds. 

 

Proof 

According to the preceding lemma, we have :  












1
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1

)1(
.

djCe

djCej

j
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 = 







1

11

2

  


1
1  

The assertion (ii) of theorem 1 allows us to conclude. It will be noticed that the result is valid for 

any value 0 . In particular, the value 2 , unlike the Lotkaian distribution, is not a key value. 
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Construction of g  

Now its existence is proven, we must show how to build it. To simplify the notations we put 

max
Ix  . 

    TdjCe

x

j
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We suppose 1x . By eliminating C  we deduce the following equation:  

   
))1(

1).1.(.

)1(
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thus  

0
)1(

1).1.(

)1(

)1(











x

x

e

xe






       (4.6) 

Unlike the case where x  is infinite there are many values 0  where the preceding equation 

has solutions. We consider   as a parameter of the equation (4.6), .0 We solve this equation 

in x , by the iterative method, using the MAPPLE 4.0 software for example. Then we 

calculate C ,  

)1(
1

.





x

e

T
C




            (4.7) 

□ 

 

We have just seen a necessary condition for an exponential function to produce a given number 

of items with a given number of sources. We shall see that if this necessary condition holds, then 

it  also holds for a Lotkaian distribution. More precisely, we have the following result:  
 

Theorem 5 

Let 0 TA be given. Let 1 . If there is  a number 1
max

I such that (4.1) satisfies (1.1) and 

(1.2), then it is also valid for (2.1). 

 

Proof 

If 
max

I  it is still true according to the results (i) of theorem 2 . 

 

If 
max

I is finite we have two cases. 

(i) 2  , we know according to the result (ii) of theorem 2 that  it is also true. 

(ii) 2 , we know according to theorem 4 that (4.5) is true, thus 
1

1





  , then 

1

1.2

1

1






 




 thus the inequality 

1

12









  is true, thus the inequality (3.3) is true: , the 

assertion (iii) of theorem 2 then allows us to conclude. 

□ 
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4.2 Examples 

 

1) 000,5,000,10  TA  thus 2  and 5.0 . The inequality (4.5) is demonstrated. 

We must then solve the equation (4.6) : 0
1

5.1).5.01.(
1

)1(5.0

)1(5..0











x

x

e

xe
. We obtain the 

solution 512.3x , then according to (4.7) we have 778,8C  

The desired exponential function is: )1.(5,0
778,8)(




j
ejg  

 

 

2) 000,7,000,10  TA  thus 43.1  and 2 . The inequality (4.5) is demonstrated. 

We must then solve the equation (4.6) : 0
1

3).21.(
86.2

)1(2

)1(2











x

x

e

xe
. We obtain the solution 

58.2x  then according to (4.7) we have 62,14C  

The desired exponential function is: )1.(2
62,14)(




j
ejg . 

 

Note 

The results in section 4 could be considered as a “mathematical fitting” method for exponential 

function, as opposed to statistical fitting. 

 

 

 

5. Perspectives: exponential informetric process 

 
In the article (Lafouge & Prime-Claverie, 2005) we define an exponential informetric process in 

terms of an exponential function and an effort function where the average quantity supplied by 

the sources, to produce all the items is finite. More precisely, a set of functions, denoted EF.  

 

EF = {   
,1:h : increasing, continuous, and not majorized } 

 

h EF an effort function is then any element of EF. 

 

, we call exponential informetric process the size-frequency function )(h :  

0.))((
)((




CeCjh
jh

       (5.1) 

 where the following quantity 

djjhjhF )().)((

1





        (5.2)  

is finite, F corresponds to the quantity of effort produced by )(h . 

 

Note 

The total number of sources T, djjhT 





1

).)((  is finite and we have the inequality  0 TF . 

 

Examples 
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The respective functions of effort, )( jh 1),(.  jLn and 0),1()(   jjh  correspond to 

the inverse power function 


j

C
jf )( and to the exponential function )1(

.)(



j

eCjg
 , studied 

previously. 

 

 

 

Problem 

What are the conditions, given the quantity of effort F , the number of sources T , for the existence 

of an exponential informetric process )(h as in (5.1), where 
max

I is a number 1 , which verifies 

djjhjhF

i

)().)((

max

1

   and  djjhT

i



max

1

).)((  ? 

 

We will limit ourselves to the case where the respective functions of effort correspond to the 

inverse power function (2.1) and to the exponential function (4.1), and where 
max

I . 

  

 

Theorem 6 

 

Let 0TF be given: 

(i) the exponential informetric process as in (5.1) where 0),1()(   jjh satisfies the following 

conditions: 

 

djeCT
j








1

)1(
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djjeCF
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1

)1(
).1(.. 

  

if  



C
FT          (5.3)  

 

(ii) the exponential informetric process as in (5.1) where 1),(.)(   jLnjh satisfies the 

following conditions: 

dj
j

CT 
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F


         (5.4) 
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TF

T
C




2

        (5.5) 

 

Proof 

(1) By (4.1)  


C
T   . An integration by part give: 



C
F   

(2) By (2.1)  
1




C
T            

)
1

()(
1

1
).(.
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djLndjjLn
j

, an integration by part give : 
2

1
)1(

1
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djjLn
j

 thus 

2
)1(

.






C
F     

    

We then deduce the desired results (5.4) and (5.5) by solving the two equations: 

1



C
T  

and 

   
2

)1(

.






C
F  

□ 

 

The case where 
max

I is finite is an open problem. 
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