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Abstract 

Statistical distributions in the production or utilization of information are most often studied 

in the framework of Lotkaian informetrics. In this article, we show that an Information 

Production Process (IPP), traditionally characterized by Lotkaian distributions, can be  

fruitfully studied using the effort function, a concept introduced in an earlier article to define 

an Exponential Informetric Process. We thus propose replacing the concept of Lotkaian 

distribution by the logarithmic effort function. In particular, we show that an effort function 

defines an Exponential Informetric process if its asymptotic behavior is equivalent to the 

logarithmic function )( xLog with 1 , which is the effort function of a Lotkaian 

distribution. 

  

1. Introduction 

Statistical regularities observed in the production or use of information have been studied 

for a long time in informetric processes. Today, they are again very topical, as is testified by 

the many articles. They are characterized by phenomena of invariance of scale during 

research into the traffic on Internet (Aby & al., 2004), (Barabasi & al., 2000). They are also 

observed when the topology of the Web is studied (Bilke & al., 2001) or when counting the 

frequencies of the number of pages or the number of degrees entering or leaving the Web 

pages in a collection of sites (Prime Claverie & al., 2005). Their most current mathematical 

formulation is that of an inverse power function, usually called a Lotkaian informetric 
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distribution.  A recent book from Egghe (Egghe, 2005) proposes a mathematical approach to 

the framework of Lotkaian informetrics, illustrated by several examples. 

 

In this article, we continue a study begun previously (Lafouge & Prime Claverie, 2005) 

where we defined the Exponential Informetric Process by introducing the concept of effort 

function. We are studying here informetric processes while drawing on traditional 

mathematical formulation in continuous mode. Mathematically, we represent the effort 

function by the logarithmic function, which is related to the effort function that appears in the 

law of Lotka (Lotka, 1926). 

 

2. Information Production Process and effort function 

Statistical distributions in the production or utilization of information, such as the law of 

Lotka (Lotka, 1926) - production of articles by researchers in a scientific community - 

generally fit into simple unidimensional models. These models can be represented by the 

diagram of Figure 1, introduced into informetric systems by Leo Egghe (Egghe, 1990) and 

called "Information Production Process" (IPP). An IPP is a triplet made up of a 

bibliographical source, a production function, and all the elements (items) produced.  
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Figure 1: Schematic representation of an Information Production Process  

 

In (Lafouge & Prime Claverie, 2005) we assume that an item produced requires a certain 

amount of effort and therefore we define the informetric process by introducing the effort 
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function (see Figure 2). We use the size frequency form, and denote as F  the  frequency 

distribution where )(iF  represents the number of sources that have produced i  items 

max
...,2,1 ii   (maximum number of items produced). The effort function )(if denotes the 

amount of effort from a source needed to produce i items 
max

...,2,1 ii  . The amount of effort, 

denoted as AF , produced by an IPP is:  








max

1

)()(

ii

i

iFifAF  

If f  is the identity function   iif   , the amount of effort produced by the process is simply 

equal to the number of items produced. Since the production and the effort (function) appear 

to be logically connected, we use both to define the Exponential Informetric Process. 
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Figure 2: Schematic representation of an informetric process using the effort function  

3.  Exponential Informetric Process  

In the article (Lafouge & Prime Claverie, 2005) we define an Exponential Informetric 

Process in terms of an exponential density and an effort function where the average quantity 

supplied by the sources to produce all the items is finite. More precisely, we define a set of 

functions denoted EF : 

EF = {   ,..1:


f 1 A , f increasing over  ..A  and not majorized } 

We call effort function an element of EF . Let a  be a number greater than 1, EFf , 

we call Exponential Informetric Process the following density function ),( afv : 

    xf
akxafv


,  ( k  constant of normalization) [1],    

where  
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1

)().)(,( dxxfxafF  is finite [2]. 

F corresponds to the average of effort produced by the density process ),( afv . The results 

(b) and (c) that follow, explain the relationship between average of effort and entropy. 

 

3.1. Entropy and effort 

 

The Maximum Entropy Principle (MEP) maximizes the entropy subject to the 

constraint that the effort remains constant, whereas the Principle of Least Effort (PLE) 

minimizes the effort subject to the constraint that the entropy remains constant (Egghe, 2005).  

 

Assuming f  an effort function and a a number greater than 1, we show in (Lafouge & Prime 

Claverie, 2005) that these conditions imply the following properties: 

(a) ),( af  is a function with decreasing density over the interval  ..A . 

(b) The two principles, maximum entropy and least effort are verified simultaneously. 

(c) If H and F  describe the average information content and effort produced by the 

process, we have the following proportional relationship: FaLogkLogH ).()(  . 

 

Note: Here we will use ea  , where e  is the Euler number, and
e

LogLog  . All the results 

are valid for a logarithmic function in any base. 

Also, in the following, for EFf   we denote as   f
efv


 the associated density function 

(we suppose 1k ). )( f is an Exponential Informetric Process if condition [2] is verified, 

that is if the average effort,    xf
exf





1

 is finite. 

Note 1 

More generally, we can easily show that if f defines an Exponential Informetric 

Process and that g  is a limited positive function, then gfh   also defines an Exponential 

Informetric Process, provided that h is an increasing function on the interval  A , where 

1A . This note enables us to envisage building a multitude of effort functions starting from 

an Exponential Informetric Process (see Example c) below). 
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Note 2 

It is important to note that there exist effort functions for which )( f  is a density 

function but the condition [2] is not satisfied. 

 

The reader will see that, for the following effort function: 

        11,1
2

 xLogLogxLogxfx   

we have 

  
 2

1

1
Log

dxxfv 



 and that 





1

))(()( dxxfxf   is infinite. 

 

Proposition 1 

Assume f and g  two effort functions, so that g  is greater or equal than f  on the 

interval  ...B  where 1B . If )( f is an Exponential Informetric Process the same holds for 

)( g . 

Proof 

Given that f and g  are increasing functions not majorized such that 

)()( xgxfBx  , there is a positive number A  greater than 1 such 

that )()(1, xgxfAx  . Knowing that the function x
ex


 is decreasing on the interval 

 ..1  we can write: 












1

)(

1

)(
)(, dxxfedxeAx

xfxg  

We can therefore conclude that if )( f  is an Exponential Informetric Process the same holds 

for )( g . 

□ 

Considering Note 2 and the result of Proposition 1, it would be interesting to define an 

Exponential Informetric Process with a different condition from condition [2]. This condition 

and related results obtained by means of Proposition 1, will be presented in the following.  
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4. Characterization of an Exponential Informetric Process 

As mentioned before, we seek to define an adequate condition that will allow us to say if 

any effort function defines an Exponential Informetric Process. To do this, we will compare 

the asymptotic behavior of an effort function with the effort functions of a Lotkaian 

distribution. 

 

4.1.  Lotkaian distribution 

 

We saw in the introduction that the most current formulation for modeling many 

phenomena related to the use or production of information is that of Lotka, given here in 

continuous form: 

 


..10)(
1

x
x

k
xv 


[3] 

The properties of these hyperbolic distributions or inverse power laws have been widely 

studied (Egghe, 2005). It seems essential to us to be able to compare these functions with an 

exponential density, defined by an effort function. 

 

We easily go from [3] to [1] taking as effort function )()1()( xLogxf   , 

where  kea , . The effort function of an inverse power function is a function proportional 

to the logarithmic function. This characteristic clarifies the principle of the least effort. This 

result is implicit in the article of Yablonsky (Yablonsky, 1981), where he shows the 

relationship between the principle of the maximum entropy and an inverse power function. 

Also, it is known that such a distribution (Lafouge & Michel, 2001) has an entropy equal to 

1
1

)( 


Log  and thus a quantity of effort equal to 1
1




. An inverse power function 

thus defines an Exponential Informetric Process (noted )( ) if   is strictly positive. For   

less than or equal to 0, )(  is not an Exponential Informetric Process and neither is a density 

function. 

 

4.2.   Effort function and Exponential Informetric Process 

4.2.1. Characterization by logarithmic effort function 
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In the following, we will characterize the Exponential Informetric Process by the effort 

function of a Lotkaian distribution. 

Theorem 1 

Let g  be an effort function so that 
)(

)(

xLog

xg
Limit

x 
 exists

1
, and verifies the condition 

  C
xLog

xg
Limit

x



)(

)(
 [4],  

where C is a finite number greater than one or infinite. Then g  defines an Exponential 

Informetric Process. 

 

Proof 

a) C  is finite 

In order to define an Exponential Informetric Process it suffices to show that condition [2] is 

verified. Since 1C , then it exists a finite number   such that .1C  Let )(xLogf   

and 



C

 , then .1  

According to the preceding, we know that f defines an Exponential Informetric Process. 

Condition [4] implies:  

            0,0  A  so that 
Cxg

xLog
Ax

1

)(

)(
,  

0,0  A  so that )(
1

)(, xgxfAx 













 .  

Choosing 





1
 , we then have )()(, xgxfAx  . Since f is an increasing function not 

majorized we can choose A so that )()(1, xgxfAx  . 

 

)( f being an Exponential Informetric Process, the preceding proposition allows us to say 

that g  defines an Exponential Informetric Process. 

                                                 

1
 There are functions for which this limit does not exist. 
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b) C  is infinite 

The relationship [4] allows us to write: 

0,0  AB so that B
xLog

xg
Ax 

)(

)(
, .  

Proof follows, as for the finite case. 

□ 

In other words, an effort function defines an informetric process if its asymptotic behavior is 

equivalent to the logarithmic function )(. xLog with 1 . 

 

Examples 

a) Exponential case 

This case corresponds to a linear effort function: 

 

  ..1,0),1()( xxxf   

where:  

 
 

 



xLog

xf
Limit

x
 

We find the well-known case of an exponential distribution : )1(
)(




x
ef


  

b) Mixed case 

This case corresponds to an effort function that is the sum of a linear type function and a 

logarithmic type function. The effort function is:  

    mmjxLogjxxfx ,,..1,0),1()1()1()(,..1   

In this case 


)(

)(

xLog

xf
Limit

x
. 

The exponential process corresponding to the density function is : 

)1(

1

)!1(

)1(
)(











x

j

j
e

j

x
xv


 ,  
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which corresponds to the distribution of Erlang. If j  is real and non-integer, we recognize the 

gamma distribution. 

c) General inverse power law 

The following example is an inverse power law modified for low frequencies. This case 

corresponds to an effort function of type: 

   1),()(,..1  


xLog
x

xfx  

This function is increasing for 



x  .  

In this case, we have 


)(

)(

xLog

xf
Limit

x
. We can then conclude.  

The associated density function is: 










 xeCf x)( ,  

where C  is a standard constant. This distribution, used for example in (Naranan, 1992), 

allows us to adjust statistical distributions on the vocabulary of various language corpora. In 

general, calculations give us   close to 2 and   less than 1. This distribution is one of many 

possible generalizations of the law of Zipf (Shan, 2005). According to the sign of the 

constant  , the effort function will have a different effect for low frequency values, which are 

known to have an important influence. In this case, the adjustment will be done via a multi-

linear regression after transforming the data on a logarithmic scale. 

 

Note 1 allows us to consider many other functions of this type. 

d) Other examples 

Among many other possible examples we have, for instance, the normal Log law with an 

effort function of type:  



2
))1((

)(
mxLog

xf


  

 

Every effort function of type:  

 

0,)(  kkxxf
n   
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also defines an Exponential Informetric Process.  

 

We can show that for these functions, the quantity of effort is finite and is equal to:  















 1,
11

1
nn

dxex
n

xn  

We can also quote the distribution of Weibul here. This distribution, like the normal Log 

distribution, can be increasing then decreasing. This is why we require an effort function to 

increase only on the interval [[ A  where 1A  and not necessarily on the interval [1[  . 

□ 

 

Regrettably, the preceding theorem is not a necessary and sufficient condition. In fact, when 

C is equal to 1, the two following cases are possible: 

- if )()( xLogxg  we know that )( g is not an informetric process 

- if )()()( xLogxLogxg   the reader can show that 



1

)().)(( dxxgxg  

Nevertheless, we can provide a necessary condition, presented in Theorem 2. 

Theorem 2 

Assume g is an effort function so that the 
Logx

xg
Limit

x

)(


 exists and verifies:  

C
xLog

xg
Limit

x



)(

)(
 [5]  

where C is a positive number less than 1, then g  is not recognized as an Exponential 

Informetric Process since its average of produced effort is infinite. 

 

Proof 

Since C1 , then it exists a finite number   verifying .1 C  Let )(xLogf   and 




C
 , then .1   

Since 1 , we know that f is not an Exponential Informetric Process. 



 11 

Condition [5] implies:  

0,0  A  so that 
 

 
 

xf

xg
Ax , . Therefore  1  .  

Since g is an increasing function not majorized we can choose A so that: 

 

)()(1, xfxgAx  . 

Since the quantity of effort dxxfe
xf

)(

1

)(





 is infinite, we can conclude using the same 

argument as in Proposition 1. 

□ 

4.2.2. Characterization by generic effort function 

 

The two previous theorems can be generalized replacing the logarithmic function by an effort 

function having a finite (Theorem 3) or infinite (Theorem 4) quantity of effort.  

 

Theorem 3 

Assume g  is an effort function and )( fv  an Exponential Informetric Process so that  

)(

)(

xf

xg
Limit

x 
 exists and verifies the condition: 

,
)(

)(
C

xf

xg
Limit

x



 

with 1C , then g  is also an Exponential Informetric Process. 

 

Proof 

The same as in the Theorem 1, using the argument: 







1

)(
)(. dxxfe

xf
. 

□ 

Like Theorem 3, which generalizes the result of Theorem 1, the following theorem generalizes 

the result of Theorem 2. 
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Theorem 4 

Assuming g is an effort function and f  an effort function with an infinite quantity of effort 

and verifying the condition: 

)(

)(

xf

xg
Limit

x 
 exists and verifies C

xf

xg
Limit

x



)(

)(
with 1C ,  

then g  is not an Exponential Informetric Process, since its quantity of effort is infinite. 

 

The proof is the same as in Theorem 3, using the argument that the quantity of effort  

dxxfe
xf

)(

1

)(





 is, in this case, infinite. 

 

4.3. Moment and Exponential Informetric Process 

 

It is a known fact that a Lotkaian distribution has only moments of order n  for n  strictly 

less than   (where 1   is the exponent of the inverse power law). An Exponential 

Informetric Process may have, or not have, moments of order n. We will give a sufficient 

condition so that an Exponential Informetric Process has a moment of order n. In order to do 

this, we will compare the asymptotic behavior of an effort function with an Exponential 

Informetric Process, whose effort function is the power function n
xxf )( , where n is an 

integer greater than 1. 

 

Theorem 5 

Let n  be an integer greater than 1 and g  an effort function so that 
nx

x

xg
Limit

)(


 exists and 

verifies the condition: 

C
x

xg
Limit

nx




)(
  

where C is a finite number greater than one or infinite, then g  defines an Exponential 

Informetric Process characterized by moments of order n . 

 

Proof 
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According to Theorem 1, g  is an Exponential Informetric Process. Let us show that it has 

moments of order n: 

 

a) C  is finite 

0,0  A so that Ax  , we have 
Cxg

x
n

1

)(
,  

therefore for 
C

1
1  , we have )(, xgxAx

n
 , 

therefore 










A

xg

A

xgn
exgex

)()(
)( .  

We can then conclude because g  is an Exponential Informetric Process. 

 

b) C  is infinite 

 

The proof is identical. 

□  

5. Conclusion 

 

An IPP (Information Production Process) is defined by sources, a production function and the 

elements produced. Given that each element produced requires a certain quantity of effort, it 

is justified to approach an IPP as much by its effort function as by its distribution. In an 

Exponential Informetric Process, both are closely linked. 

 

In informetrics, the traditional cases of IPP are generally characterized by Lotkaian 

distributions. Given that it is justified to approach an IPP by the effort function, we here 

propose replacing the concept of Lotkaian distribution by the logarithmic effort function. The 

results presented in this article, in particular Theorem 1 and Example c), show that if a 

distribution of effort is equivalent to the logarithmic function )(. xLog with 1 , we have 

an Exponential Informetric Process. 
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