
HAL Id: sic_00001565
https://archivesic.ccsd.cnrs.fr/sic_00001565v1

Submitted on 13 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The filtering mechanism to the service of the UML
Boubker Sbihi

To cite this version:
Boubker Sbihi. The filtering mechanism to the service of the UML. AMO - Advanced Modeling and
Optimization„ 2005, 6 (1). �sic_00001565�

https://archivesic.ccsd.cnrs.fr/sic_00001565v1
https://hal.archives-ouvertes.fr


 75

AMO - Advanced Modeling and Optimization, Volume 6, Number 1, 2004 

 
The filtering mechanism to the service of the UML 

 
Boubker Sbihi 

Ecole des sciences de l’information  
BP 6204 Agdal,Rabat,Morroco 

+212 66 38 20 45 
Bsbihi@Esi.ac.ma 

 

ABSTRACT 
The objective of this paper is to present an approach that allows modeling and 

implementing thereafter an software system with different points of view.  The norm defined 
by the UML language obliges to formulate our solution according to its notation. However, 
the visibility offered by the UML is insufficient to support the dynamic aspect of points of 
view. To composite for this problem we defined a mechanism of filtering based on the UML 
and that permits to filter services offered by a class of a system according to its points of 
view.  Such an addition will permit to complete the UML visibility and implement codes of a 
complex system by the majority of oriented objects languages of the market as JAVA, C++,...  
Keywords 
Point of view, UML, Filtering mechanism, Multi-points of view system, Pattern of 
implementation 
 

1. INTRODUCTION 
With the advent of the third millennial, computer system users have became more 

demanding concerning functionality, richness, diversity of information and conformity to the 
demands of the various users. It is precisely for this reason that these systems must be 
evolutionary in order to welcome new users and offer to every one a wide access to data of all 
nature. Such a modeling cannot be achieved according only to one point of view because of 
the different needs of every user and his rights of access to relevant information. It is for this 
reason that several research works of research relative to the point of view’s concept in 
different fields of the data processing have been marked the previous decade. Indeed, the 
point of view’s notion has been studied in correlation with the object’s notion in many works 
interesting various domains of the data-processing research. It is the case of the systems 
LOOPS and TROPES [26] in the domain of the representation of knowledge [5], of roles 
models [14] and of the two approaches based on the UML of Clark and Catalysis [6], in the 
conception of application [8] [11]. It is also the case of systems of data bases object with 
points of view as O2Views, COCOON and MultiView [26] [1], to only mention some of 
them. The point of view’s notion was also dealt with in the domain of the programming object 
notably in the programming by subjects [20], the programming by aspects [16], and finally 
the programming by views [18]. Concerning our works within our team they have already led 
to the definition of the VBOOL language [17], to the method associated VBOOM and to its 
extension toward the UML, U_VBOOM [15]. In the same way similar works concerning the 
generation of code multi-targets for methods VBOOM and U_VBOOM while taking as basis 
on the filtering mechanism as a basis was the object of some of our research [21] [22] .  

The Standard defined in the unified modeling language UML standardized by the OMG 
(Object Management Group) [19] covers the static and dynamic aspect of a system according 



 76

to its different diagrams. The notion of view in UML [27] is a means placed at the disposal of 
the conceptor to structure a conception: use case, logic, components, deployment. However, 
the UML alone, doesn't allow to integrate the notion of view within its modeling in diagrams 
of classes. In this context, it proposes a static visibility that cannot change dynamically with 
time and that doesn't permit a fine cutting according to the different points of view. It doesn't 
answer, therefore, to requirements of complex system users. In order to resolve this problem, 
we have decided to add to the diagram class UML a filtering mechanism [21] [24] which has 
already been used before to model the dynamic aspect of a non normalized modeling that is 
the one of the VBOOM’s method. In this paper, after an introduction (section1), we will 
proceed to the definition of the UML visibility for the class diagram (section 2). In the second 
place we will describe the filtering mechanism based on the UML visibility (section 3); then 
we will present an example of the use of the filtering mechanism for attributes and methods 
through a pattern of implementation (section 4, 5, 6, 7), before concluding these works by a 
conclusion and some perspectives.  

 
2. THE VISIBILITY UML 

The unified modeling language UML is the result of the fusion of several methods 
fusion oriented objects and presents itself as the reference in term of modeling object. It 
covers the static and dynamic aspect of a system according to its different diagrams. Its goal is 
to specify, visualize, construct and document the computer systems mainly the complex 
systems. For that purpose, it defines nine diagrams to represent the different points of view of 
the modeling. They are presented in the figure below (Figure 1) :  
 

 
Figure 1. The nine diagrams of the UML 

 
The nine diagrams of UML are subdivided in :   
- Static views, that represent physically the system to modelled by means of diagrams of 

objects, of classes, of use cases, of components and deployments.  
- Dynamic views, that show the working of the system by means of diagrams of 

sequences, collaborations, states transitions and activities.  
The diagram of classes is the basic model for the implementation of a software since it 

can be translated directly in the different programming languages such as Java, C++ or C #. 
The model object that constitutes the bricks of the software to be achieved can be deducted 
directly from the model of classes corresponding. Besides, several data processing software 
exist (Rational Rose,…) which take diagrams of UML classes in charge and generate the code 



 77

relating to then. These two diagrams will be concerned by the filtering mechanism that will be 
applied to the diagram of classes and will be reflected on the relevant diagram of objects. 
Every class of the classes diagram possesses a set of attributes (state) and a set of methods 
(behavior). A class in UML is an abstract type characterized by properties (attributes and 
methods) common to a set of objects and permitting to create objects having these properties 
(Figure 2) :   

 
 

      Figure 2. Composition of a class in UML 
 

The modeling language UML implements the notion of visibility by distinguishing three 
levels of visibility on the primitives (Private, Protected, Public).  The significance and the 
UML notation of these visibilities are defined in the following table (Table 1) :  

 
Notation  Significance  

-  private Primitive is only visible in the class  
+ public  Primitive is visible by all other classes  
 # protected Primitive is visible by the class and its under classes  

Table 1. Levels of visibility UML and their significance 
 

These three levels are sufficient in the case of a system not requiring to be endowed of 
points of view. But this is not the case for a system considered according to different points of 
view, i.e. containing objects that are not seen of the same way by all users of the system.  
Indeed the UML alone only, cannot even take in consideration the points of views notion for a 
class. The distinction of three levels of visibility is too restricted to manage points of view. 
Also, the dynamic change of visibility is impossible during the execution (for example an 
attribute of UML public visibility will always remain so during the execution).  

Moreover, if we associate a level of visibility to an attribute of an object in a system, 
then all users are obliged to see this object from the same angle, independently of the point of 
view of each of these users. With regard to attributes, UML defines three properties for their 
use. These properties are defined in the following table 2 (Table2) :  

Property  Significance  
Changeable  Attribute in reading/writing  
Frozen  Constant  
Read Only  Attribute in alone reading  

Table 2. Properties of attributes defined in UML 
 

Let's take, for example, an attribute to which we want to give the privilege of reading to 
certain points of view, the modification for others and to mask its value for the remainder; it 
cannot be endowed with many properties (Changeable, read-only) at the same time. It result 
then, the insufficiency of the visibility of the UML.  

Therefore, to solve the problem of is the integration of the points of view’s notion in the 
UML, it was necessary to find a means giving the possibility of modeling, dynamically and 
according to points of view for systems including multi -points of view objects, the visibilities 
of the primitives. Let's note that our solution that is the one of the filtering mechanism is 
based entirely on the UML visibility.  

 

Class = attributes + methods  



 78

3. THE FILTERING MECHANISM    
In order to remedy to the problems of the inability of the visibility that UML offers for 

supporting the dynamic aspect (dynamic change of points of view), we defined a filtering 
mechanism [21] [22] [23] [24]; this mechanism permits the filtering of the services offered by 
one class, according to the point of view of the user asking for these services. Indeed, based 
on the UML visibility, it permits us to define a visibility on a primitive of a class according to 
the different points of view. It allows us to change the visibility of the primitives dynamically 
with time and can give to an attribute the possibility of reading to certain points of view, the 
modification for others and to mask its value for the remainder. In this context, the notion of 
the point of view consists in making the distinction between the points of view of different 
users, according to the to the system to be modeled. This distinction appears mainly at the 
level of the rights of access of each of these users essentially to the different entities or 
attributes of the system. An user's visibility, in relation with a primitive, determine the level of 
access of this user on this primitive as for the possibility of his use.  

The filtering mechanism targets the primitives like a unit of work. It defines for them a 
new visibility, allowing thus the management of access rights. In this new context, an attribute 
could be either inaccessible, or accessible in reading, or accessible in writing according to the 
points of view. So, it allocates three types of visibility to attributes presented in the table 
hereafter (Table 3):  

Type of Visibility Value Visibility 
Nor reading, nor modification  1 
Reading only 2 
Reading and modification  3 

Table 3. Types and Values of visibility for attributes 

The same principle is applied for methods since it forbids or allow the access according 
to points of view. It also allocates two types of visibility for the methods illustrated in the 
table below (Table 4):  

Type of Visibility Value Visibility 
Not accessible  4 
Accessible  5 

Table 4. Types and Values of visibility for methods 

A UML class diagram of a complex system is not only composed of the primitives 
divisible between different points of view. It can include public primitives for all the points of 
view. In order to simplify the filtering mechanism and to optimize its implementation, we will 
note that a primitive divisible for all type of access (reading and modification for attributes 
and accesses to methods) will be called public divisible primitive to the different points of 
view; on the other hand a primitive that is not will be called a multi-points of view primitive.  

Therefore, the primitive are organized in the UML in the form of classes. In this 
context, a class that possesses at least a multi -points of view primitive will be called multi - 
points class of view ; otherwise, it will be called public divisible class (this one won't be taken 
in consideration in the filtering mechanism). The goal of the filtering mechanism is to mask 
the primitives shared by several points of view and to allow the access to them only through 
predefined filtering methods taking points of view like arguments. In our approach, the brick 
is the whole object and not only he roles [14] or the parceled out objects [3] or subjects [20] 
or views [18]. This model offers the advantage to be implemented by any language oriented 
object as Java, C++, C #,…  



 79

4. THE IMPLEMENTATION’S PATTERN OF THE FILTERING MECHANISM  
The Patterns of implementation are sometimes called patterns of coding theyn concern  

implementation advices in a specific programming language. They permit to define how to 
program in a particular language. They associate to a problem a solution of implementation. 
We find implementation patterns mainly in C++, in Smalltalk and lately in Java [13]. The 
complete pattern of implementation would have to, in addition of the solution, clearly explain 
the problem and the context.  

To optimize the UML class diagram of a system with points of view, we will add to this 
diagram a class called Filtering Class which implements the filtering mechanism. This choice 
comes from the good reutilisability of code implemented in this class. However, we cannot 
use this filtering class and implement the methods of filtering in multi-points of view classes. 
The filtering class possesses a certain number of methods endowed with a public UML 
visibility UML taking the points of views as parameters. These primitives will be accessible 
from the class of filtering in multi-points of view classes, through the relation of the UML 
simple inheritance. To distinguish the filtering class, we will add to him the UML stereotype 
<<Filtering>>.  For the filtering mechanism, every multi-points of view class should be a 
downward class by inheritance of the filtering class since it is precisely in this one that we are 
going to implement the filtering mechanism. We illustrate the filtering mechanism with the 
help of the survey of case of a class STATION that can be seen according to three different 
view points. Every point of view (Developer, Engineer system, Seller) possesses only one 
view on the station (V - Developer, V - Engineer, V - Seller) that are respectively relative to 
him. The diagram UML modeling the Station will be able to be modeled in UML as 
follows (Figure3):  

 
Figure 3 : Diagram of class of the station in UML 

In the example of the station, our filtering class is called Station_Filtring..It  contains 
the attributes and the methods of the filtering mechanism. The class Person is a public 
divisible class that doesn't possess a primitive multi-points of view ; that is why it won't be 
retained in the filtering mechanism. On the other hand, multi - points classes of view Station, 
Software and System will be taken in account since they possess the multi-points of view 
primitive. They must be joined to the Station_Filtring class via the relation of inheritance. To 
return our approach really usable, we decided to target the languages oriented objects of the 
market on the one hand, and on the other hand to propose a translation of a model with classes 
of filterings in a model of implementation multitargets (Java, C++, Eiffel,…). We go, in what 
follows, to define a pattern of inspired implementation of Gamma patterns [12]. It has for goal 



 80

of implementing the notion of points of view in a diagram class UML that is, in our case, the 
one of the station. It is applied mainly to classes of languages oriented objects.  
5. DICTIONARY OF PRIMITIVE MULTI - POINTS OF VIEW  

In order to implement the filtering mechanism, we will define a new point of view that 
is the one of the administrator of points of view. He has the possibility to add, to modify, to 
suppress the other points of view and their views in a dynamic manner. He must be provided 
however of a password to do that. The administrator of points of view possesses are 3 for 
every multi-points of view attribute and 5 for every multi-points of view method.  The multi-
points of view’s primitives of the example of the station can be gathered in a table named 
dictionary of the multi-points of view primitives. This dictionary illustrates the points of view 
and their rights of access on the global multi- points of view diagram that appears in attributes 
and multi-points of view methods. For our case, we can have the following dictionary (Table 
5):   

 
Table 5. Extract of the dictionary of primitives multi - points of view 

 
 (*): 0: Administrator, 1: Developer, 2: Engineer, 3: Seller. 
 
6.FILTERING AND CALL TO METHODS  

In order to implement the values of the dictionary of the multi-points of view primitive, 
we will add to the filtering  class the following attributes and methods :  
 
6.1 THE ATTRIBUTES  OF POINTS OF VIEW’S ADMINISTRATION  

There are two attributes of points of view administration ; a table of character String 
will model the different points of view and a matrix with three dimensions  of whole type (int) 



 81

will model the visibility of these points of view. It will have a parameters, the number of the 
point of view, the number of the class and the number of the attribute or the method of multi-
points of view class. Their UML visibility is declared private to forbid the direct access 
without the slant of these methods.  

 
Table 6. The declaration of administration’s attributes of points of view in Java 

 
We can mention, a example, for the point of view fields and the visibility:   
Point of view [0] = "Administrator" and Point of view [1] = Developer ".  
Visibility [0][1][2]=3 // the visibility of the point of view Administrator on the class Station 
on multi-points of view attribute Speed is equal to 3.    

The administrator of points of view can easily add and can dynamically extract points of 
view and their visibilities while modifying values of administration attributes.  
 
6.2 THE METHOD OF ACCESS TO THE VISIBILITY AND METHODS OF ACCESS 
TO THE PRIMITIVES MULTI-POINTS OF VIEW  
To reach the visibility of a multi-points of view primitive, according to a specific view point, 
we will use the Getvisibility method that possesses the parameters of whole type (int).  

 
Table 7. Declaration of the access method to the visibility by points of view in Java 

 
To reach the visibility of a primitive multi-points of view, according to a specific view 

point, we will use the following UML public visibility methods :   



 82

 
Table 8. Declaration of access methods to the primitives multi-points of views in Java 

 
6.3 THE METHODS OF EVOLUTION OF POINTS OF VIEW  

In order to manage the points of view and their visibilities, we will define six methods 
of management; three among them (AddPV, ModifyPV, SuppressPV to) are relative to points 
of view, and the others (AddVisibility, ModifyVisibility, SuppressVisibility) to their 
visibilities (Table 9). These methods can be only used, by the administrator of points of view 
that possesses the adequate. privilege to make this task. They possess a UML public visibility 
to allow the administrator of points of view to reach them while specifying his identity.  



 83

 
Table 9. List of methods of management of points of view and visibilities 

 
The administrator will use the AddrPV method to add a new point of view in the 

filtering Class while giving as parameters: the new point of view, the name of the 
administrator point of view and his password. In the same way, he can use the other methods 
pertaining to points of view. He will use the AddVisibility method to add a new visibility on a 
class of the diagram primitive; the administrator must provide the following parameters: the 
administrator login, the administrator password, the number of the point of view concerned, 
the number of the class, the number of the primitive, the new value to be added. In the same 
way, he can use the other methods pertaining to visibilities of points of view.   
 



 84

7.CALL OF PRIMITIVES MULTI-POINTS OF VIEW  
The instanciation of a new object belowing to a multi-points of view class of the class 

diagram or no, won't change the syntax. However, it will change at the time of the affectation 
or the use of an attribute or to the call of a multi-points of view method.   

The access will be made according to the three methods of the accessible filtering 
mechanism from the class of filtering while using the relation of inheritance. In what follows  
continuation, we give some examples of the use of these methods:  

To reach, in reading, a multi-points of view attribute according to a specific point of  
view as for example, the multi-points of view attribute « Speed » in the class Station by the 
developer, we use the AccessReadAttribute method that returns the value of the multi-points 
of view primitive and that possesses as parameters: N° Point of View, N°Class, N°Primitive 
and password. The call of this method in java is made as follows :  

Station S= new Station(); 
float Value_Speed=S.AccessReadAttribute( 1, 1, 2,  “Password_ developer” ) ; 

To reach in writing a multi-points of view attribute according to a point of specific view 
as for example, the « Num_ip » multi - points of view attribute in the class  V-Engineer by the 
engineer who possesses the right to change it in an address of value : 172.1.5.7, we use the 
AccessWriteAttribute method ; this method changes the value of the attribute and return the 
value 0 in case of mistake and 1 if there is no mistake. It possesses as parameters: N° Point of 
View, N°Class, N°Primitive, New value and password. The call of this method is made as 
follows :  

V-Engineer VE=new V-Engineer(); 
Int Value =VI.AccessWriteAttribute(2, 3, 2, “172.1.5.7”, “Password_engineer” ) ; 
To call a method according to a specific point of view, for example the call of  the 

multi-points of view method of Maintien(Date) in the classe V-Seller by the seller, we will 
call the InvokeMethod method ; this method reaches a multi-points of view method while 
giving as parameters: N° Point of View, N°Class, N°Primitive, TypesParametres, Parameters 
and password. It returns the value of the new object if is not mistake and the null object in 
case of mistake. The call of this method is made as follows :  

V- Seller  VS=new V-Seller(); 
Object o= VS.InvokeMethod (3, 4, 4, Date, D Date, “Password_seller”). 

In the same way, we can use the remainder of the methods illustrated in table n°9.  
The model UML as result by points of view guarantees the coherence of data, the 

suppression of certain redundancies, the management of access rights, the centralization of the 
knowledge and the possibility to evolve dynamically the points of view. The filtering 
mechanism defines a filtering on attributes and methods while taking the UML visibility like 
a basis. It forbids the direct access to the primitive and gives back the possible access to them 
by the slant of methods predefined that have points of view as arguments (methods of 
filtering). It targets the multi-points of view primitive as a unit to which it defines a new 
visibility allowing the management of access rights.   
 
CONCLUSION  

The interest approach presented in this article is to integrate concepts of point of view in 
a diagram of UML classes in order to automate the generation of the code source of complex 
applications with the majority of the languages oriented objects while remaining in the 
standard. It essentially rests on the notion of interface that is a kind of filter on all 



 85

functionalities offered by one given class. It also serves to make points of view of a complex 
system evolve dynamically. The filtering mechanism gives a net progress in the modeling of 
complex technical systems encouraging the conherence, the reliability and the reutilisability 
of the produced models. We have also defined a pattern of implementation which describes 
the generation of code object relative multitargets to a multi-points of view component.   

The work describes here, is part of a wide project. The objective of which is to define a 
methodology for the development of multi-points objects of view components. Among the 
tasks that are still to be performed :  
- The definition of the multi-points of view component notion, as applicable regrouping of 
classes possibly multi-points of view.  
- The development of a basis of pattern of conception supporting the approach by points of 
view  
- The standardization of the U_VBOOM method.  
 
REFERENCES 
[1] Abiteboul S.and Bonner.A, 1991, Objects and Views. Proceedings of ACM SIGMOD, p. 
238-247. 
[2] ASJ. AspectJ-Oriented Programming (AOP) for Java. http ://www.aspectj.org. 
[3] Bardou.D. 1998. Survey of languages to prototypes, of the delegation mechanism, and of 
its report to the notion of point of view. Thesis of doctorate, computer specialty, University 
Montpellier 2.  
[4] Bouraqadi.N and Ledoux.T. 2001, The point on the programming by aspects.  Technique 
and Computer Sciences, vol 20, page 505 à 528, Hermés. 
[5] Carré.B and Geib.J.1991,The Point of View Notion for Multiple Inheritance, Proceeding 
Of ECOOP/OOPSLA. 
[6] Clarke.S.2002. Extending standard UML with model composition semantics. Science of 
Computer Programming, Elsevier Science, 2002.   
[7] Coad.P 1992, Object-Oriented Patterns.Communications of the ACM, vol 35, N°9, p. 152-
159.  
[8] Coulette.B and al.1994. The approach by points of view in the development oriented 
object of the complex systems. Reviewed the object, vol 2, n°4, p. 13-20. 
[9] Couturier.V and Séguran.M. 2003. Patterns and Components to Capitalize and Reuse a 
Cooperative Information System Architecture. In Proceeding of the 5th International 
Conference on Enterprise Information Systems ICEIS’03, Angers, 23-26 p. 225-231. 
[10] Debauwer.L and al. 2000. Contextualization of OODB Schemas in CROME. DEXA 
2000, 11th International Conference, London. 
[11] Finkelstein.A and al.1993. Inconsistency Handling in Multi-Perspective Specifications. 
Actes conférence ESEC'93, Garmish- Patemkirchen (D), pp. 84-99.  
[12] Gamma.B and al..1995. Design patterns, Elements of Reusable Object-Oriented 
Software. Addison-Wesley.  
[13] Grand.M.1999. Patterns in Java. Volume 2, Wiley & Sons. Tropes. 1995. Tropes 1.0 
reference manual, INRIA Rhônes-Alpes  IMAG LIFIA, Grenoble, France.  
[14] Gottlob..G and al.1996. Extending Object-Oriented Systems with Roles. ACM 
Transactions on Information Systems (TOIS), page 268-296. 



 86

[15] Hair.A, Sbihi.B and A.Ettalbi.A. 2003. Object-oriented Modelling by viewpoint using 
UML, Advanced Modeling and Optimization, pp.107-115, 
http://www.ici.ro/camo/journal/v5n2.htm 
[16] Kiczales.G and al.1997.Aspect-Oriented Programming. In European Conference on 
Object-Oriented Programming (ECOOP), Finland, Springer-Verlag LNCS 1241. 
[17] Marcaillou.S.1995.Integration of the notion of points of view in the modeling by objects - 
The Language VBOOL, Thesis of the university Paul Sabatier of Toulouse. 
[18] Mili.H and al.2000. Views: A Framework for Feature-Based Development and 
Distribution of OO Applications. Proceedings, Thirty-Third Hawaii International Conference 
on System Science, Honolulu, HI.  
[19] OMG.  http://www.omg.org 
[20] Ossher.H and al.1996. Specifying subject oriented composition. Iin Theory and Practice 
of Object Systems (TAPOS), 2(3), 1996. Special issue on Subjectivity in Object-Oriented 
Systems.  
[21] Sbihi.B and al.2003. Toward a generation of code multi-targets for the VBOOM 
method : Approach by filtring, The 2003 International Conference on Software Engineering 
Research and Practice (SERP'03), Las vegas, USA. 
[22] Sbihi.B and al.2003. Implementation in UML of the points of view’s notion in a Distance 
Education System. Act 4th International Conference on Information Technology Based 
Higher Education and Training, Marrakech, Morocco.  
[23] Sbihi.B. 2004. L’utilisation du mécanisme de filtrage pour implémenter un système 
d’enseignement à distance. Workshop e-learning vers un campus virtuel marocain, 8-10 
Janvier, Agadir, Morocco 2004.  
[24] Sbihi.B and al.2004. The integration of the points of view notion in UML. Act The IADIS 
Applied Computing 2004 conference, Lisbon, Portugal 2004.   
[25] Rundensteiner.A.1994. A Classification Algorithm for Supporting Object-Oriented 
Views. Proceedings of the 3rd International Conference on Information and Knowledge 
Management (CIKM'94), Gaithersburg, Maryland, USA, ACM Press., pages 18-25. 
[26] Tropes 1995. Tropes 1.0 reference manual . INRIA Rhônes-Alpes  IMAG-LIFIA, 
Grenoble, France. 
[27] UML 1.4. Unified Modeling Language, version 1.4, 2003, http://www.omg.org/docs/ 
formal/03-03-01.pdf 
 
 

http://www.ici.ro/camo/journal/v5n2.htm
http://www.omg.org/docs/ formal/03-03-01.pdf
http://www.omg.org/docs/ formal/03-03-01.pdf

	1. INTRODUCTION

