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Résumé : Many different approaches to the geometric and
statistical analysis of document layouts have been propo-
sed in the literature. The development of practical branch-
and-bound algorithms for solving geometric matching pro-
blems under noise and uncertainty has enabled the formula-
tion of new classes of geometric layout analysis methods ba-
sed on globally optimal maximum likelihood interpretations
for well-defined models of the spatial statistics of document
images. I review this approach to geometric layout analysis
using text line finding and column finding in the presence
of noise and uncertainty as examples and compare the ap-
proach with selected other statistical and geometric layout
analysis methods.

Mots-clés : document layout analysis, geometric matching,
text line finding, branch-and-bound algorithms, global opti-
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1 Introduction
In addition to their purely textual content, rendered docu-
ments contain a wealth of information in the geometric arran-
gement of the text and figures on the page–thepage layout.
Examples of properties encoded in the page layout are infor-
mation about which text corresponds to the title, author, page
number, and abstract of a document, the order in which the
body text is to be read (thereading order), and major logical
divisions in the body text. Recovering this information is the
problem ofdocument layout analysis.
Document layout information has a variety of uses. It is a
key step in the conversion of scanned documents into ma-
chine readable form ; that is, what we typically think of “op-
tical character recognition” (OCR) actually comprises both
layout analysis and recognition of individual characters. In
fact, even the recognition of characters in OCR depends on
correct document layout analysis, since the interpretation of
certain characters is affected by their position relative to the
text line and since statistical language models depend on the
correct reading order of the text. Furthermore, the user of
an OCR system usually expects to obtain not just a vector
graphics file with thousands of characters placed at specific
location in the image, but instead an editable and structured
text file that contains text in its correct reading order and cor-
rectly identifies actual line and paragraph breaks.
But while OCR is perhaps the most important use of docu-
ment layout analysis, it is not the only one. Document data-
bases need to extract information that permits indexing and

retrieval of documents. This information can often only be
derived from the layout of the text (as opposed to the textual
content or even font properties). For example, titles and au-
thors of scientific papers tend to be printed at the top of the
first page, centered, with the title immediately preceding the
author and separated from the rest of the text by whitespace,
properties that are recoverable by document layout analysis.
Another application of document layout analysis is image-
based reformatting and reflow of documents, a technique that
allows the display of scanned documents on small-screen de-
vices without OCR errors and while preserving the appea-
rance of the original document [BRE 02b].

2 Layout Primitives
The actual layout of a document is the result of the applica-
tion of complex, interacting rules about where to place text
on the page. Some of those rules are consequences of pro-
perties of the human visual system and attempts to make
text more readable (e.g., keeping line lengths below a cer-
tain number of characters per line), others are the results of
physical constraints (e.g., page size), constraints imposed by
traditional type setting equipment (e.g., the use of straight
and parallel text lines), convention (e.g., where page numbers
and titles go), as well as stylistic and artistic considerations.
While layouts can become enormously complex, almost all
layouts tend to be composed of a number of recurring pri-
mitives. The most important of these are text lines, text co-
lumns, sections, and paragraphs. Furthermore, these primi-
tives have a number of common geometric relationships bet-
ween them, defined by their relative size, spacing, alignment,
and justification. We call the extraction of these primitives
physical document layout analysis. We refer to the extraction
of higher-level properties of a document (like titles, authors,
page numbers, etc.) aslogical document layout analysis. Lo-
gical document layout analysis generally makes use of physi-
cal document layout analysis to achieve its goals. This work
deals primarily with physical document layout analysis, that
is, the reliable extraction of primitives like text lines and text
columns, and the geometric relationship between those pri-
mitives.

3 Previous Methods
A large number of physical document layout analysis tech-
niques have been proposed in the literature ([CAT 98] pro-
vides a good overview). In order to perform their function,
layout analysis techniques make assumptions (explicitly or



implicitly) about the geometric properties of the layouts that
they are applied to. Commonly made assumptions, by dif-
ferent systems, are that text lines are parallel to each other,
that text on the page is composed of characters of approxima-
tely the same font size, that paragraph boundaries are straight
and perpendicular to text lines, that paragraph boundaries are
rectangular, that larger logical divisions correspond to grea-
ter physical spacing of text, that paragraphs of text contain
only limited amounts of whitespace, and many more.
Such assumptions are approximate expressions of the phy-
sical, stylistic, and perceptual constraints on layout analysis.
In practice, none of the assumptions made by current layout
analysis systems result in human-like performance on real
documents ; that is, for each of those assumptions, there will
be some classes of documents that violate those assumptions,
yet are easily interpretable by a human reader. A complete
taxonomy of the assumptions made by different document
layout analysis methods goes beyond the scope of this pa-
per, but we will try to examine important differences as they
arise. While the models reviewed in this paper does not per-
mit the interpretation of all documents that a human reader
could easily interpret, it does relax some commonly made
assumptions, which makes it applicable to a wider class of
document layouts.
First, many previous physical layout analysis methods ex-
plicitly or implicitly assume that text lines on a page are
(mostly) parallel to each other. For example, projection me-
thods and Fourier transform methods for skew estimation as-
sume that most of the text on the page is at a single orien-
tation and then attempt to correct page rotation (“skew”)
and transform all text lines into lines that are oriented at
multiples of90o relative to the page boundaries ; text lines
are then identified in a second step in this corrected image
(see [HAR 94, BAI 87, SRI 89, BAI 87, OKU 99] for fur-
ther details). This assumption of a global page rotation of
an otherwise rectilinear layout means that such methods are
not applicable to some important classes of documents, such
as those captured with digital cameras and hence subject to
perspective distortions. Some previous methods for finding
text lines do not require rectilinear layouts, but they have had
to sacrifice precise geometric models of text lines (in terms
of baselines, descenders, and ascenders) for simpler methods
using proximity of connected components [O’G 93, KIS 98]
text line finder described here does not make prior assump-
tions about text line parallelism, but still models the geome-
try of each text line precisely.
Another assumption commonly made by other layout ana-
lysis systems is that of a physically represented layout hie-
rarchy. That is, layout components like sections, paragraphs,
and text lines form a hierarchy based on inclusion : sections
are composed of paragraphs, and paragraphs are composed
of text lines. It seems plausible to take a top-down or bottom-
up approach to recovering these layout components. That is,
such methods first identify sections, then paragraphs, and fi-
nally text lines. Examples of such approaches are approaches
like X-Y cuts [NAG 84] that successively split the page into
smaller and smaller units top-down, and approaches that use
proximity of connected components [O’G 93, KIS 98] or
mathematical morphology [CHE 95] group elements on the

page into successively higher level grouping in a bottom up
manner. However, in practice, the logical layout hierarchy
does not appear to be very well represented in simple geo-
metric properties of the physical layout ; higher-level layout
properties do not, in general correspond to larger amounts
of whitespace or other large-scale features. Instead, logi-
cal layout components like paragraphs and sections are of-
ten represented only through subtle means like indentation
or changes in font style (e.g., bold section headings), while
physical layout structures like text columns or page breaks
that do not form part of the logical layout hierarchy often
have much simpler geometric representations on the page.
The layout analysis techniques described here are not organi-
zed around a logical layout hierarchy ; instead, they concen-
trate on identifying the visually most salient properties of the
page layout–its columnar structure and its text lines. Logi-
cal layout properties like paragraphs and sections can then
be recovered from that information.

4 Statistical and Geometric Models
4.1 Text Lines
Probably both for typesetting and for perceptual reasons, text
in many writing systems is set along straight lines. For Latin
scripts, which we focus on in this work, each character rests
either on a baseline or on a line of descenders (Figure 1). The
top of each character reaches either up to thex-height, or to
the line of ascenders. Note that the location of each character
“on” the baseline or line of descenders is only approximate–
typographic conventions resulting from perceptual pheno-
mena dictate that in well-designed fonts, the actual location
of individual characters differs slightly from their precise lo-
cation relative to the baseline.
As is commonly done, we approximate the shape of each
character by its (axis-aligned) bounding box and use the bot-
tom center of the bounding box as a reference point [BAI 87].
If there is no rotation present at all, this reference point will
lie on the baseline or line of descenders if the character does ;
for small page rotations, the position of the reference point
will differ from the actual location of the character relative
to the baseline, but for the range of page rotations encounte-
red in practice, the difference is slight. The amount of diffe-
rence depends, however, on the character shape, and it will
be larger for characters whose bounding box is defined by
straight, off-center lines (e.g., “H”) than for characters like
“T” or “O”.
Deviations from the baseline, errors resulting from using
the bounding box approximation, image noise, and scanner
quantization all result in some noise in the location of re-
ference points relative to the baseline or line of descenders.
We approximate this noise by a Gaussian distribution, but
bound the maximum allowable deviation ; that is, beyond a
certain deviation from a given baseline, it is more likely that
the character in question belongs to a different baseline or
background noise rather than belonging to the same baseline
with a large deviation.
The text line model shown in Figure 1 is parameterized by
two line parameters for the baseline (we use angleθ and dis-
tance from origin,r), plus three parameters for the size of the



FIG. 1 – The text line model used by the algorithm.

descenders, thex-height, and the ascenders. However, every
character rests either on the baseline or line of descenders.
Therefore, in order to identify all characters contributing to a
text line, it is sufficient to model the baseline and the line of
descenders, a three-parameter problem.1

Ignoring the line of descenders for a moment, the likelihood
with which a character is found at some pointp given a set of
line parameters(θ, r) is then (up to normalization factors) :

P (p|θ, r) ∝ max(β, Gσ(d(p, `θ,r))) (1)

Here,`θ,r is the baseline,d(p, `θ,r) is the distance ofp from
the baseline,Gσ(x) is a Gaussian distribution with zero mean
and standard deviationσ, andβ is a background probability.
This model is analogous to the model for geometric matching
described by [III 97], where the reader can find a more exten-
sive justification.
Taking into account the line of descenders, we arrive at a
mixture distribution

P (p|θ, r, dd) ∝ max(β,

(1− λ)Gσ(d(p, `θ,r)) +
λ Gσ(d(p, `θ,r−dd

))) (2)

= max(β,

(1− λ)Gσ(d(p, `θ,r)),
λ Gσ(d(p, `θ,r−dd

))) (3)

Here,dd is the distance of the line of descenders from the
baseline, andλ is the frequency with which descenders occur.
We have assumed that the ranges for which the distributions
around the baseline and around the line of descenders are
greater than the background distribution are well separated,
which has allowed us to replace the sum in Equation 2 with
the max in Equation 3.
With the above statistical model, we can now formulate text
line finding as that of finding a maximum likelihood solution
for our statistical model :

ˆ̀
θ,r,dd

= arg max
θ,r,dd

∏
i

P (pi|θ, r, dd) (4)

For the purpose of finding maximum likelihood solutions, it
is easier to take the logarithm of this equation (the logarithm

1Modeling the line of ascenders and thex-height can be used to reject
characters from a match that accidentally fall on the baseline or the line
of descenders. That can improve robustness for very noisy documents or
documents with unusual layouts.

is a monotonic function) :

ˆ̀
θ,r,dd

= arg max
θ,r,dd

∑
i

log P (pi|θ, r, dd) (5)

= arg max
θ,r,dd

∑
i

max(log β,

log(1− λ) + log Gσ(d(pi, `θ,r)),
log λ + log Gσ(d(pi, `θ,r))) (6)

= arg max
θ,r,dd

∑
i

max(0,

log(1− λ) + log Gσ(d(pi, `θ,r))
− log β,

log λ + log Gσ(d(pi, `θ,r))
− log β) (7)

By choosing parameters appropriately and writingx =
d(p, `θ,r) this reduces to a particularly simple form :

ˆ̀
θ,r,dd

= arg max
θ,r,dd

∑
i

max(0, c1 − c2x
2, c3 − c4x

2) (8)

Here, the parametersc1, ...,c4 depend onβ, σ, andλ.
This is the optimization that we need to perform in order to
find the maximum likelihood solution to the text line finding
problem under our statistical model. It is closely related to
robust least square fitting in robust statistics [HUB 81]. Op-
timizing these kinds of functions is difficult with traditional
methods, such as gradient descent, because they have many
local minima and large “flat” regions. However, below, we
will see how we can find globally optimal solutions to such
optimization problems.
As stated above, the approach assumes that there is only a
single text line on the page plus background noise. However,
for each reference point that contributes to the total likeli-
hood for a particular choice of line parameters, we not only
get a contribution to the total likelihood, but also an indica-
tion of whether it was considered part of the text line or whe-
ther it contributed as a background point (β). This means that
once we have found a maximum likelihood solution, we can
divide the reference points that contributed to it into those
that contributed as background points and those that did not.
The reference points that did not contribute as background
points are then counted as being “part of” the line, while
the background points can be re-examined for the next-best
maximum likelihood solution2

2A formal justification of this approach goes beyond the scope of this



FIG. 2 – A simple column model. The red rectangles are bounding boxes for connected components, the green dots are the
reference points used for each bounding box, and the blue line is a robust linear fit to the reference points.

4.2 Column Boundaries
At first sight, the problem of finding text columns is quite si-
milar to the problem of finding text lines. That is, text is type-
set in columns so that the leftmost character in each column
aligns on a straight line with the other leftmost characters on
each text line that is part of the column. We can therefore pick
the bottom left corner of each character as an alignment point
and perform a line matching operation similar to that used for
text line finding. The likelihood model and optimization pro-
blems are also analogous to that for text line finding, except
that modeling of baselines is not required. This approach is
illustrated in Figure 2. Such an approach has many of the ad-
vantages of the text line finding algorithm mentioned above :
it can find column boundaries even if they are not parallel to
each other (e.g., in perspectively distorted document images),
and it does not rely on any global properties of the page. An
example of the application of a combined text line and co-
lumn finding method can be found in Figure 3, where it is
applied to the problem of removing perspective distortions
from images captured with a hand-held camera.
However, while useful in some instances, unlike the text line
model, such a column model is not satisfactory for complex
documents because of the statistics of real documents. One
simple way of understanding that difference is the following
observation. If we pick out an arbitrary connected component
corresponding to a character, it is with high probability part
of some text line. In contrast, only a small fraction of all cha-
racters are actually part of a column boundary (namely, only
those characters at the beginning of a text line). Therefore,
there is almost no possibility for false positives during text
line finding, since there are very few connected components
not part of text lines, and those components are unlikely to
be aligned linearly, while there is a significant probability
of false positives during text line finding, namely when cha-
racters that are otherwise not part of any column boundary
accidentally align linearly.
In order to recognize text columns reliably, we need to take
advantage of additional information that helps us distinguish

paper.

actual text columns from accidental alignments of characters.
One property that suggests itself is the use of whitespace. In
fact, many algorithms for geometric layout analysis rely only
on whitespace for detecting column boundaries. Examples
are the use of X-Y segmentations [NAG 84], and whitespace
covers [BAI 94, BAI 90]. However, in our experience, whi-
tespace covers by themselves, without the use of additional
information, are not a reliable method for column detection
either. But combining the computation of whitespace covers
with the computation of columnar alignments turns out to
result in a method that empirically recognizes column boun-
daries with lower error rates than either whitespace-only or
alignment-only methods alone.
There are several ways of formalizing the combination of
whitespace covers with measuring the alignment of connec-
ted components as a column boundary. First, we can start
with the maximum whitespace rectangle formulation as des-
cribed by Bairdet al. [BAI 94, BAI 90] and add a require-
ment that a minimal number of connected components be
present around the outside of that rectangle. Alternatively,
we can start with a column finder based on linear alignment
of reference points, as in Figure 2 and add a requirement
that significant amounts of whitespace be present next to the
column boundary. For historical reasons–maximal rectangle
whitespace covers had already proven to be fairly reliable at
detecting column boundaries and since we developed simple
and efficient algorithms for computing them–we adopted the
first approach.
This approach and insight then leads to a computational geo-
metry problem for finding column separators. In the case of
axis-aligned document layouts, we can state this problem for-
mally as follows (also illustrated in Figure 5.

Definition 1 Axis-Aligned Maximum Whitespace Rec-
tangle with Halo Problem.The input to the algorithm is a rec-
tangular outer boundB, a collection of axis-aligned rectan-
gular obstaclesRi, a distanceε, and a threshold counth. The
output of the algorithm is a rectangleM with maximal area
satisfying (1)M ⊆ B, (2) for all Ri, area(M ∩Ri) = 0, and
(3) the number of rectangular obstaclesRi within a distance



FIG. 3 – Application of the text line and column finders to the problem of removing perspective distortions of documents captured
with hand-held cameras. The application is enabled by the fact that the text line and column finders do not make any assumptions
about parallelism among text lines or columns.

FIG. 5 – Maximal whitespace rectangles with halo. See the
text for details.

of ε of M is greater thanh, #{Ri : dist(Ri,M) ≤ ε} ≥ h.

This definition can be generalized easily to non-axis aligned
rectangles, although (as we will see) the resulting algorithm
differs significantly. Furthermore, in practice, it is useful to
limit the aspect ratio of the maximal rectangles found by the
algorithm.
Note that our reasoning for stating this approach to column
finding has a rather different motivation from our approach
to text line finding. In the case of text line finding, we started
with a clearly defined geometric model of text lines (cha-
racters resting either on the baseline or line of descenders),
chose an error model, and derived the maximum likelihood

solution. In the case of column finding, while we were mo-
tivated by a similar model–alignment of characters along a
line–we ultimately chose an algorithm based on maximal
whitespace rectangles because such algorithms have been
found to work well in previous work [BAI 94, BAI 90] ; the
constraint of linear alignment of the connected components
corresponding to the first character of each text line adjacent
to the column separator comes in through the halo require-
ment. This requirement of having a halo of connected com-
ponents under a given error bounds corresponds to a bounded
uniform error noise model, as opposed to the Gaussian error
model used with the text line finder.

5 Branch-and-Bound Algorithms
In the previous section, we have discussed the kinds of statis-
tical and geometric models that correspond to text lines and
column boundaries. However, we have so far left open the
question of how to find optimal solutions under those mo-
dels ; without practical algorithms, such models would sim-
ply not be very useful. In fact, the use of the models descri-
bed in the previous section has only been enabled through
the development of a new class of practical optimization al-
gorithms. These algorithms, described below, combine ideas
from branch-and-bound geometric matching algorithms in
computer vision [BRE 92] and interval arithmetic optimiza-
tion [HAN 80]. Furthermore, they incorporate an important
optimization that we refer to asmatchlists[BRE 92].
The basic idea behind these algorithms is to formulate the
search for an optimal solution as a search over a multidi-



FIG. 4 – A column model that takes into account whitespace. The red rectangles are bounding boxes for connected components,
the green dots are the reference points used for each bounding box, and the blue line is a robust linear fit to the reference points.
The blue area to the left of the blue line is the columnar whitespace.

mensional parameter space. In the case of finding maximum
likelihood text line solutions, the parameter space is three-
dimensional : it consists of a range of angles[θ, θ], a range
of distances from the origin[r, r], and a range of distances
for the line of descenders from the baseline[dd, dd]. In the
case of finding non-axis aligned rectangles with halo, the pa-
rameter space is four dimensional3 and consists of a range
of rectangle centers[x, x] and[y, y], a range of orientations
[θ, θ], and an aspect ratio[r, r].
In both cases, the objective functions (Equation 8 and the
area function subject to the constraints in Definition 1) are
ill-suited to the usual gradient-based optimization methods
because they contain large “flat” regions and many local
minima. In order to find good solutions to these problems,
we need global optimization techniques. The combination of
branch-and-bound methods together with interval arithmetic
has proven to be a powerful tool for these kinds of problems
[HAN 80, BRE 03b]. The idea is that we subdivide the para-
meter space into hyper-rectangular subregions and compute
upper and lower bounds on the value of the objective function
over each subregion.
This can be accomplished using interval arithmetic. Interval
arithmetic allows us to take an objective function in alge-
braic notation and replace the arithmetic operations occur-
ring in that objective function with their interval equivalents.
(This can be accomplished automatically in languages like
C++ through overloading.) The resulting interval objective
function then computes upper and lower bounds on the value
of the objective function over each hyper-rectangle in para-
meter space. Those bounds are not guaranteed to be tight, but
they are guaranteed to beconvergent[JAU 01]–informally, as
the hyper-rectangle in parameter space becomes smaller, the
bounds are guaranteed to approximate the true value of the
objective function closer and closer.
In order to make this approach practical for these applica-

3Such rectangles are actually described by five parameters, but the re-
quirement that the rectangles are maximal reduces the parameter space that
needs to be searched to four dimensions, given a particular set of obstacles.

tions, we need to apply an important optimization. Observe
that the objective function for text line finding, given by
Equation 8 is a sum of individual contributions. Furthermore,
we have rewritten that objective function so that the contri-
bution of background features to the total sum is zero. The
interval equivalent of this objective function will be evalua-
ted repeatedly in the inner loop of the search algorithm. But it
can be shown easily that if a contribution from some feature
point pi is zero for a hyper-rectangle in parameter space, it
will remain zero for any subrectangle of that hyper-rectangle.
All points making zero contributions therefore need not be
considered during further evaluations of the objective func-
tion for subrectangles in parameter space. We keep track of
the points making non-zero contributions on a simple data
structure, the matchlist. As we consider subrectangles of a
hyper-rectangle in parameter space, points are removed from
the matchlist and need not be evaluated any further in the
computation of the objective function for such subrectangles.
Using these insights, we can now write down pseudo-code
for the global optimization algorithms for these geometric
problems (for brevity, we use the termregion instead of
“hyper-rectangle in parameter space”) ; this is shown in Fi-
gure 6. Actual code for this problem is, in fact, very close to

def globally_optimize(region,points):
q = objective_function(region,points)
queue.enqueue(q,region,points)
while not queue.is_empty():

(q,region,points) = queue.dequeue_max()
if accurate_enough(region): return region
subregions = split(region)
for subregion in subregions:

subpoints =
[list of point in points

if point contributes to objective_function]
subq = objective_function(subregion,subpoints)
queue.enqueue(subq,subregion,subpoints)

FIG. 6 – Pseudo-code for finding globally optimal solutions
to the maximum likelihood problems described in the text.

the pseudo-code shown in Figure 6.
A question that remains about these algorithms is how ef-



ficient they are. Commonly used methods for analyzing the
performance of geometric and numerical algorithms deter-
mine asymptotic complexities in terms of elementary arith-
metic operations. Such analyses are both difficult and not
very useful for these classes of algorithms. They are diffi-
cult because the complexity of these algorithms depends on
the desired accuracy of the computed results. Increasing the
desired accuracy, the asymptotic complexity of the algorithm
can be shown to be linear in the number of solutions and the
input, but in practice, the algorithms are usually used with a
fixed, finite accuracy dictated by the problem requirements.
Furthermore, the problem instances themselves are limited in
complexity : since they are derived from scanned documents
and there are physical and perceptual constraints on the size
and complexity of such documents, asymptotic complexity
is of less interest than actual complexity on the range of pro-
blem complexities found in real-world applications. Having
said that, we find average running times of approximately 1
second for the text line finder (finding all text lines in a docu-
ment image) and less than 0.25 seconds for the white space
cover on modern PC hardware on the documents in the Uni-
versity of Washington Database 3 (UW3), with approxima-
tely linear scaling of running times in terms of the number
of connected components over the range of document com-
plexities found in the UW3 database.

6 Discussion
This paper has reviewed well-defined models of the spa-
tial statistics of document layouts and algorithms for finding
maximum likelihood solutions under such models. These ap-
proaches to layout analysis differs from previous methods for
finding geometric layout primitives in a number of important
ways.
First, they are guaranteed to find globally optimal solutions
under the specific geometric and statistical model chosen.
That makes their results reproducible and deterministic ; if
the algorithm fails to come up with a correct solution, we
know that this must be a problem with the statistical model
itself, no simply a failure of the algorithm to find the optimal
solution to the model. Empirically, this simplifies debugging
and parameter estimation for layout analysis systems based
on these methods.
Second, the algorithms are expressed in terms of well-
defined models of spatial statistics and errors ; the distributio-
nal parameters (error bounds, frequency of background fea-
tures) can be estimated from sample images and have intui-
tive interpretations. At the same time, the models also incor-
porate strong prior knowledge about the geometry of docu-
ment images (e.g., the fact that text lines are usually straight).
This is in contrast to other well-founded statistical models of
page layout proposed recently [LIA 99, LIA 01] ; those mo-
dels also take advantage of statistical constraints, but they
rely on more general statistics of the relative spatial distri-
butions of layout elements, making both the parameter es-
timation and the inference problem considerably harder. It
is also in contrast with projection-based methods for layout
analysis [BAI 87, NAG 84], whose criteria for determining
the location of text lines or paragraphs are generally not di-
rectly related to spatial statistics of the location of characters

on the page.
Third, the methods presented here can operate “locally” ; that
is, individual text lines and column separators can be found
independently of each other. This allows us to apply the me-
thods both to novel document types (e.g., documents with
text at various different orientations) and to standard docu-
ment types captured in novel ways (e.g., document capture
with hand-held cameras, resulting in perspective distortion).
In contrast, many commonly used methods for geometric
layout analysis rely on global layout properties. For example,
methods like projection-based text line finding and layout
analysis generally assume rectilinear layouts and the ability
to find a single, global page rotation that will “deskew” the
page. There are some methods for geometric layout analy-
sis that do not make such global assumptions, such as the
Voronoi-based technique of [KIS 98] or closely related me-
thods based on linking nearby connected components. Howe-
ver, while they are able, in principle, to operate on pages that
have been perspectively distorted or contain text at various
different orientations, those methods rely on much weaker
geometric models of text lines than the methods presented in
this paper. That suggests that they will be more susceptible
to false positive errors in the detection of text lines ; however,
this remains to be demonstrated on actual datasets.
In this short review, we have focused on motivating particu-
lar models of spatial statistics for layout analysis and out-
lined an approach to inference based on branch-and-bound
methods that makes using such models feasible for real do-
cument analysis problems. For detailed performance data in
specific applications, the reader is referred to the literature.
For data on the accuracy of text line finding and deskewing
using these methods, [BRE 02c] contains an evaluation on
the UW2 database. For data on the reliability with which
the method finds column separators, the reader is referred
to [BRE 02a]. Results on non-axis aligned column separa-
tor identification can be found in [BRE 03a]. More complete
document analysis systems taking advantage of the novel ca-
pabilities of these methods have also been described, inclu-
ding a system for image-based reflowing of document images
[BRE 02b].
However, the reader should keep in mind that these methods
can also be used as a drop-in replacement for commonly
used existing methods in document analysis, often yielding
some improvement in performance, reliability, or functiona-
lity over existing methods. For example, the text line finder
described above can be used in place of projection-based text
line finders for reliable skew estimation and text line identi-
fication. And the maximal empty rectangle methods outlined
above can be used as a drop-in replacement for the whites-
pace cover approach described by [BAI 94, BAI 90].
Future work on these algorithms divides into fundamental
algorithmic improvements on the one hand, and the explo-
ration of additional application areas on the other. On the
algorithmic side, one open problem is the application of
these optimization methods to higher-dimensional parame-
ter spaces. Currently parameter spaces beyond four or five
dimensions lead to impractically long computation times.
However, our lab is currently examining methods for spee-
ding up search that may allow us to extend that limit for



many kinds of objective functions. We are also examining
other approaches to coping with problems such as matching
smoothly curved text lines (as they occur, for example, on
photographic images of curved book pages). On the applica-
tion side, one of the most important areas is the use of these
methods with non-Latin scripts, languages, and page layouts.
Furthermore, a detailed performance evaluation and compa-
rison between other recently proposed layout analysis tech-
niques [LIA 99, LIA 01, KIS 98] and these methods remains
to be done.
In order to facilitate more widespread adoption of these me-
thods, we are making available sample implementations for
research purposes ; please contact the author for more infor-
mation.
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