I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet, UNIPEN project of on-line data exchange and recognizer benchmarks, Proceedings of the 12th IAPR International Conference on Pattern Recognition (Cat. No.94CH3440-5), pp.29-33, 1994.
DOI : 10.1109/ICPR.1994.576870

S. Jaeger, S. Manke, J. Reichert, and A. Waibel, Online handwriting recognition: the NPen++ recognizer, International Journal on Document Analysis and Recognition, vol.3, issue.3, pp.169-180, 2000.
DOI : 10.1007/PL00013559

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.306-351, 2001.
DOI : 10.1109/5.726791

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.1115

E. Poisson and C. Viard-gaudin, Réseaux de neurones à convolution : reconnaissance de l'écriture manuscrite non contrainte, pp.1-02, 2001.

E. Poisson, C. Viard-gaudin, and P. M. Lallican, « Réseaux de neurones à convolution : reconnaissance de l'écriture manuscrite non contrainte, 2002.

L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of IEEE, pp.257-285, 1989.

N. Ragot and E. Anquetil, A generic hybrid classifier based on hierarchical fuzzy modeling experiments on online handwritten character recognition, IEEE Proceedings, Actes des Seventh International Conference on Document Analysis and Recognition, pp.963-967, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01191727

. Sim, S. Y. Simard, D. Steinkrauss, and J. C. Platt, Best Practices for Convolutional Neural Networks Appied to Visual Document Analysis, IEEE Proceedings, vol.2, pp.958-962, 2003.