Computing most general unifiers in Euclidean modal logics - IRIT - Université Toulouse III Paul Sabatier
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

Computing most general unifiers in Euclidean modal logics

Résumé

We prove that all extensions of K5 have unary unification, even with parameters. Our proof is constructive in the sense that we can effectively compute, in 4-exponential space, a most general unifier for any unifiable formula. In particular, this proves that unification and admissibility are decidable. We also investigate special unification types: we show that K5 and KD5 are transparent, and we characterize the projective extensions of K5.
Fichier principal
Vignette du fichier
main.pdf (507.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04244893 , version 1 (16-10-2023)
hal-04244893 , version 2 (21-05-2024)

Licence

Identifiants

  • HAL Id : hal-04244893 , version 2

Citer

Quentin Gougeon. Computing most general unifiers in Euclidean modal logics. 2024. ⟨hal-04244893v2⟩
744 Consultations
104 Téléchargements

Partager

More