ML-DOA estimation using a sparse representation of array covariance - Ifsttar
Communication Dans Un Congrès Année : 2024

ML-DOA estimation using a sparse representation of array covariance

Résumé

Sparse Direction-of-Arrival (DOA) estimators depend on the regularization parameter λ which is often empirically tuned. In this work, conducted under the vectorized covariance matrix model, we are looking for theoretical equivalence between the Maximum Likelihood (ML) and sparse estimators. We show that under mild conditions, λ can be chosen thanks to the distribution of the minimum of the ML criterion. The corresponding λ choice is θ-invariant, only requiring an upper bound on the number of sources. Furthermore, it guarantees the global minimum of the sparse ℓ0-regularized criterion to be the ML solution.
Fichier principal
Vignette du fichier
jdse2024_v1.pdf (290.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04712921 , version 1 (28-09-2024)

Licence

Identifiants

  • HAL Id : hal-04712921 , version 1

Citer

Thomas Aussaguès, Anne Ferréol, Alice Delmer, Pascal Larzabal. ML-DOA estimation using a sparse representation of array covariance. 9th Junior Conference on Data Science and Engineering (JDSE), Université Paris-Saclay; Institut Polytechnique de Paris, Sep 2024, Gif-sur-Ivette, France. ⟨hal-04712921⟩
72 Consultations
10 Téléchargements

Partager

More