Data-Driven Performance Evaluation of Geometric Clustering for PolSAR Data Analysis - SIGMAPHY
Conference Papers Year : 2024

Data-Driven Performance Evaluation of Geometric Clustering for PolSAR Data Analysis

Gabriel Vasile

Abstract

We have introduced a method for unsupervised classification of PolSAR data, on the manifold of Hermitian positive definite matrices obtained from the polar decomposition. In this paper we investigate the polarimetric information preservation of the Hermitian factor using manifold gradient computation. We provide an algorithm to select the optimum number of classes based on the Calinski-Harabasz criterion in the Riemannian geometry context.
Fichier principal
Vignette du fichier
main.pdf (20.59 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04672813 , version 1 (19-08-2024)

Licence

Copyright

Identifiers

  • HAL Id : hal-04672813 , version 1

Cite

Gabriel Vasile. Data-Driven Performance Evaluation of Geometric Clustering for PolSAR Data Analysis. IGARSS 2024 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2024, Athenes, Greece. pp.4. ⟨hal-04672813⟩
39 View
8 Download

Share

More