A stable local commuting projector and optimal hp approximation estimates in H(curl) - Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique
Article Dans Une Revue Numerische Mathematik Année : 2024

A stable local commuting projector and optimal hp approximation estimates in H(curl)

Résumé

We design an operator from the infinite-dimensional Sobolev space H(curl) to its finite-dimensional subspace formed by the Nédélec piecewise polynomials on a tetrahedral mesh that has the following properties: 1) it is defined over the entire H(curl), including boundary conditions imposed on a part of the boundary; 2) it is defined locally in a neighborhood of each mesh element; 3) it is based on simple piecewise polynomial projections; 4) it is stable in the L2-norm, up to data oscillation; 5) it has optimal (local-best) approximation properties; 6) it satisfies the commuting property with its sibling operator on H(div); 7) it is a projector, i.e., it leaves intact objects that are already in the Nédélec piecewise polynomial space. This operator can be used in various parts of numerical analysis related to the H(curl) space. We in particular employ it here to establish the two following results: i) equivalence of global-best, tangential-trace-and curl-constrained, and local-best, unconstrained approximations in H(curl) including data oscillation terms; and ii) fully h- and p- (mesh-size- and polynomial-degree-) optimal approximation bounds valid under the minimal Sobolev regularity only requested elementwise. As a result of independent interest, we also prove a p-robust equivalence of curl-constrained and unconstrained best-approximations on a single tetrahedron in the H(curl)setting, including hp data oscillation terms.
Fichier principal
Vignette du fichier
H_curl_proj.pdf (813.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03817302 , version 1 (17-10-2022)
hal-03817302 , version 2 (05-12-2023)
hal-03817302 , version 3 (04-10-2024)

Licence

Identifiants

Citer

Théophile Chaumont-Frelet, Martin Vohralík. A stable local commuting projector and optimal hp approximation estimates in H(curl). Numerische Mathematik, inPress, ⟨10.1007/s00211-024-01431-w⟩. ⟨hal-03817302v3⟩
211 Consultations
81 Téléchargements

Altmetric

Partager

More