
HAL Id: sic_00001742
https://archivesic.ccsd.cnrs.fr/sic_00001742

Submitted on 23 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Production and use of information. Characterisation of
informetric distributions using effort function and
density function. Exponentiial informetric process

Thierry Lafouge, Camille Claverie Prime

To cite this version:
Thierry Lafouge, Camille Claverie Prime. Production and use of information. Characterisation of
informetric distributions using effort function and density function. Exponentiial informetric process.
Information Processing and mangement, 2006, Vol 41. �sic_00001742�

https://archivesic.ccsd.cnrs.fr/sic_00001742
https://hal.archives-ouvertes.fr


 1 

 

 

 

 

 Production and use of information. Characterization of informetric 

distributions using effort function and density function. 

Exponential Informetric Process 

 

 

 

 

Abstract 

Statistical regularities observed in the production or use of information have been studied for 

a long time. In this article we define an Exponential Informetric Process to formalize these 

stochastic process. It is defined by combining an effort function with a density function. 

Without using the powerful results of Price on the cumulative advantages process this 

characterization clarifies the principle of least effort.. Some links between statistical theory of 

information and some informetric distributions are enhanced. 
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1. Introduction 

Scientific production is cumulative by nature. If we look from a scientometric point of view 

and evaluate the number of articles produced by researchers, we know that each new scientific 

article published is usually built on previous results. In his article, an author quotes the 

bibliographic references of other work produced earlier (which may be his) in order to 

validate his work. Furthermore, a known social phenomenon, "success breeds success", will 

then occur: the n
th+1

 publication will be easier than the preceding one. It will require less effort 

than the n
th

 publication. This law may prove false for a given period. Let us take the example 

of a known researcher having published numerous articles and tackling a new research topic, 

who wants to publish his results in a journal that does not know him: it is possible that his 

publications will not be accepted readily by this journal and need lots of work from him for 

his publication to be accepted easily again. Various aspects of this well-known phenomenon 

are examined in scientometrics. The best known result is that of cumulative advantages 

formulated by Price in 1976 (Price 1976). He shows that a law of probability - often called the 

cumulative advantages process - explains these phenomena when we pass to extreme cases. 

This is known in informetrics through the laws of Bradford, Lotka (production of articles by 

the aforementioned researchers) and Zipf. These laws are called power laws in the 

information production process (Egghe 2005). 

In this article we introduce an effort function. Mathematically, this effort function is defined 

simply through an exponential function. We shall speak of the Exponential Informetric 

Process. This mathematical formalism will allow us to establish simply a linear relationship 

between the information content, or entropy within the meaning of Shannon's theory 

information, and the average amount of effort. This average amount of effort produced by the 

process is obtained by using an distribution of effort. This formulation clarifies certain well-
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known characteristics of the power distributions quoted previously, namely their link with the 

maximum entropy principle (Yablonsky 1980). 

2.  Information Product Process and effort function 

The study of statistical regularities observed in the production or utilization of information 

confirms the existence of significant similarities. Also, the existence of regularities and 

measurable ratios allow us to validate the concept of laws of information. These laws are 

known under the names of the researchers who observed and analyzed these statistical 

regularities: Bradford (distribution of articles on a given topic in scientific journals), Lotka 

(production of articles by researchers in a scientific community), and Zipf (regularity of the 

words in the texts). These distributions, which the bibliometrician very often encounters when 

statistically analyzing collections, generally fit into simple unidimensional models. We 

represent these productions in the diagram of figure 1, introduced into informetric systems by 

Leo Egghe (Egghe 1990) and called "Information Production Process" (IPP). An IPP is a 

triplet made up of a bibliographical source, a production function, and all the elements (items) 

produced. Here, the definition of bibliographical source is very broad. It enables us to 

describe, with the same term, all the authors in a scientific community, and also all the words 

in a text. 
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Figure 1 

Schematic representation of an Information Production Process with effort function 

 

 

Any IPP is defined using a production function. As an example, for the best known IPP in 

informetrics quoted above, we have the following production functions: 

 - Authors (sources) produce articles (items) - Law of Lotka (Lotka 1926), 

 - Journals (sources) publishe (produce) articles related to a well determined subject 

(items) - Law of Bradford (Bradford 1934), 

 - Words (sources) produce occurrences of words (items) - Law of Zipf ( Zipf 1949). 

The observation and statistical treatments of these processes lead us to calculate the 

distribution of the observed frequencies. We use here the size frequency form. The 

distribution of frequencies is noted   where )(i represents the number of sources that have 
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produced i  items ( max....2,1 ii   (maximum number of items produced)). In general, we 

observe a decreasing distribution, which is characteristic of these processes. For example, in 

Lotka's formulation this means the number of authors having produced i articles is greater 

than the number of authors having produced 1i  articles. Also, these greatly decreasing 

distributions usually fit power distributions: 

.0,0....,2.1)( max  kii

i

k
i 


 

where k  is a coefficient of standardization and   an indicator of concentration characterising 

the dispersion of the distribution. The exponent   is only an indicator of concentration within 

the family of Lotka or power function. 

In the work of Egghe (Egghe 2005), we can find a complete panorama of the properties and 

applications of power laws in the information product process. 

We henceforth assume that each item produced requires a certain amount of effort. In this 

article, we introduce the effort function f  where )(if denotes the average amount of effort 

from a source needed to produce i items max....2,1 ii  . This amount of effort is characteristic of 

the process and is not necessarily directly observable. We give possible interpretations of this 

function. In the first process, it depends on the publication system set up by a scientific 

community. In the second, it is the editorial system that determines the effort function. For 

word production, we can quantify the effort produced by the length of the word: the longer the 

word, the greater the effort. The average amount of effort, denoted F , produced by such a 

process is           :                  






max

1

)().(

ii

i

iifF   

 

If f  is the identity function iif )( , the average amount of effort produced by the process is 

simply equal to the number of items produced. We will suppose that this function is 

increasing. The type of growth will characterize the process. A growth of a concave function 

that is slowing, such as the logarithmic function, )()( iLogif  , will characterize the power 

distributions that we have just seen. 

3. Average information content or entropy 

 3.1 Definition 

In 1948 C. Shannon worked out a statistical theory on the transmission of electrical signals. 

This statistical theory of information (Shannon, C. 1993).  stipulates that the more the states 

of a system are equiprobable, the more the process produces information. This work extends 

the theory of Hartley and Wiener, which stipulating that the more an event is unpredictable, 

the more information it contributes. The average information content of a process is given by 

the measurement of the entropy (denoted H ) of Shannon. If nip i ,....,1,  denotes n 

probabilities such as 




n

i

i
p

1

1 we have 






n

i

ii pLogpH

1

)(. . 

Note: we will use here 
e

LogLog  . All the results are valid for a logarithmic function in any base. With a 

concern for standardization, the information theory uses the function in base 2. 
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In (Lafouge 2003), we showed all the wealth and omnipresence that the Shannon theory has 

with the information sciences. Properties inherent in the information sciences are often 

quoted. A new result published from time to time shows an unexpected aspect, as for example 

in Information Retrieval, the publication of Sandor Dominich (Dominich and al. 2004). In this 

article the author use the well known property, " The farther apart ip from each other the 

smaller the amount of information", to define an UDO (Uncertainty decreasing operation) 

probability space. 

 3.2 Maximum entropy principle and principle of the least effort 

The maximum entropy principle (denoted here MEP) consists of maximizing the average 

information content imposing on the system a constant average amount of effort (denoted F). 

This latter has been used by Kantor (Kantor 1998) in Information Retrieval for modelling 

information search situations. The principle of the least effort (denoted here PLE), attributed 

to Zipf (Zipf 1949) in linguistics, consists of minimizing the average amount of effort 

imposing on the system an average information content. Intuitively, we can say that the MEP 

consists of choosing the maximum profit solution from among a set of situations requiring the 

same production effort. Whereas the PLE chooses the solution that minimizes the effort from 

among a set of solutions giving the same profit. L. Egghe and T. Lafouge have shown (Egghe 

2006) that these two principles are equivalent for discrete, finite and decreasing distributions, 

which we often encounter in informetrics. 

 

 

4. Exponential Informetric Process 

 4.1 Continuous distributions 

When we mathematically formalize informetric processes, two representations are possible: 

the discrete mode or the continuous mode. In the preceding, we used a discrete representation 

to define a stochastic process We then chose to work in continuous mode in order to 

generalize the results. We define  two functions: a density function and an effort function. 

In all the following, we shall denote by   a density function modelling any stochastic 

process. We suppose that this is defined on the interval  ..1  and that the necessary condition 

for standardization, 1)(
1




dttv  [1] is verified. 

We introduce  effort function f also defined on the interval  ..1 , positive increasing and not 

bounded, which verifies the following condition:  


dttftvF )().(
1

 [2]. 

This second condition signifies that the average amount of effort to produce all the items is 

finite. The functions v  and f define what we call in this article an informetric process. These 

two distributions are not independent. It is natural to think that we can express the production 

according to the effort. This is what we are going do now by defining an Exponential 

Informetric Process. 

 4.2 Definition of an Exponential Informetric Process 

Let f  be a positive function defined on  ..1  and a, a positive number greater than 1. We 

define an Exponential Informetric Process ),( afv  by: 0.)(),(
)(




kaktafv
tf  where f  is 

an effort function. 
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Condition [2] is then written 





1

)(
).( dtatf

tf [3]. The effort f is increasing, not bounded, 

so we can easily show that )(
.)(),(

tf
aktafv


  verifies the condition [1] of standardization 







1

)(
dta

tf
 and that it is now possible to calculate the constant of standardization k . The 

geometric and power distributions that we currently encounter in bibliometry are represented 

by this simple model as we see later. 

 4.3  Exponential Informetric Process and entropy 

We shall now show that an exponential process thus defined verifies the two preceding 

principles, the MEP and the PLE, and that we have a simple relationship between amount of 

effort and information content. In continuous mode, if a process is defined by its density 

function v , its entropy H  is calculated by the formula:  dttLogtvH ))(().(  . Contrary to 

the discrete mode, entropy H is not necessarily positive. 

Firstly, let us recall the mathematical formula of these two principles for a stochastic process 

. 

Maximum entropy principle (MEP) 

The MEP consists of maximizing the entropy, meaning the function H  

 dttvLogtvvH ))(().()(  knowing that   1)( dttv  and ]4[)().(  Fdttvtf  and where f  is 

a given positive function (effort function) and F  a fixed constant (average amount of effort). 

 

Principle of the least effort (PLE) 

The PLE consists of minimizing the effort, meaning the function F ,  dttftvvF )().()(  

where f is a given effort knowing that   1)( dttv  , and    HdttvLogt ).(().( where H  is a 

given constant (average information content). 

 

We then have the following results, which characterize an Exponential Informetric Process. 

 

Theorem: Exponential Informetric Process, MEP and PLE 

With an Exponential Informetric Process, 1,0.)(),(
)(




akaktafv
tf  f an effort function 

(increasing and verifies the condition [3]) we have the following properties: 

(a) ),( af  is decreasing. 

(b) The two principles, maximum entropy and least effort are verified simultaneously. 

(c) If H and F  describe the average information content and effort produced by the 

process, we have the following proportional relationship: ]6[).()( FaLogkLogH  . 

 

Proof 

Note: we no longer specify the interval of variation of and f  which is  ..1 . 

Demonstration of (a) 

We can easily show that ),( afv is a decreasing density function because we have 1a and f  

increasing. 

Demonstration of (b) and (c) 

- For the MEP 
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Next [3] ),( afv verifies the condition [4], let us put dtaktfF
tf





)(

.).(  

Let us show that H reaches its maximum for the function ),( afv . Let G  be the following 

function: )(.)(),( aLogfvvvLogvvtG    where  is a constant whose value is: 

)(1 kLog . 

We have: )(.1)(),( aLogfvLogvtG
v





  

So we can easily show that the derivative is cancelled for ),( afv  (to simplify, we then denote 

),( afv  by 
f

v ) 

For t fixed, we have: 0),( 



f

vtG
v

 and 0
1

),(
2

2






v
vtG

v
 

G  being convex and 
v

G




 cancelling whatever the value of t  fixed, for any v  function. 

Checking [4] we can then write: ),(),(
f

vtGvtG  . 

 

 Hence v , )(..)()(.)( aLogvfvvLogvaLogfvvvLogv
ffff

   

 or v , dtaLogvfvvLogvdtavLogfvvLogv
ffff

))(.)(())(.)((     

Finally, we have the result: dtvLogvdtvLogv
ff

))(())((    

- For the PLE 

To verify the condition [5] of the PLE, let us calculate the value of the entropy H : 

We have  dtvLogvH
ff

).(.  

)dt.Log(k.ak.a
ff 

  = 


 dtkafaLogdtakkLog
ff

.).(..)( FaLogkLog ).()(   

This calculation demonstrates the condition (c) of linearity. 

Let us demonstrate that EF reaches its minimum for the function
f

v . Let G , the following 

function )()(),( afvLogvvLogvvtG    where   is a constant with the 

value )(1 kLog . As for the preceding case, we can easily conclude. (In the case of the 

PLE, the condition 1a is necessary to conclude. We will find the case 1a  examined in the 

article already quoted (Egghe 2004) for the finite discrete case). We note that the condition of 

decrease is not necessary to demonstrate the result (b) and (c). 

4.4 Examples  

Note here we will use ea  . All the results are valid for any  number 1a . 

The geometric and power distributions that we currently encounter in informetrics can be 

represented by this simple model. 

- Geometrical model: the effort function is the linear function 1,0)1()(  tttf   

The exponential informetric corresponding process is then written: 
)1(

.),(



t

eaf


  The 

entropy is equal to )(1)(  LogH  . 

- Power model: the effort function is a logarithmic function, 1,0)()1()(  ttLogtf   is 

then the exponential informetric corresponding is then written: )().1(
.),(

tLog
eaf





  The 
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form used is in general: 
)1(

))(,(








t
taf  . In this case the entropy (Yablonsky 1981) is equal 

to 



1

)(1)(  LogH  

We note that in both cases, the entropy is a decreasing function of . The interpretation of the 

law of Lotka has been verified. The greater , the greater the gap between the small number 

of researchers who publish a lot and the large number of researchers who publish little. 

 

- Mixed case 

In this case the effort function is composed of two functions: the first one is linear (effort 

constant) and the other logarithmic (least effort law). The effort function is 

: 0,.......,2,1,0)().1(.)(  tjtLogjttf  . The exponential informetric process 

corresponding process is : t
j

j
e

j

t
tv








 .

)!1(
)(

1

. The reader will find more details in 

(Lafouge 2001). 

 

- Another example 

The effort function is : 1.00.)(  tktktf 
  

The exponential corresponding process is then written : 



kt

eaf


),( . We must show that 

F .It is easy to show the condition [3] is verified for we have:  

:  )1,
1

(.
1

1







 






dtet
t  

where   is the Gamma function :  00..),(
1







 badtteba
a

b

t
 

In the geometrical case, the effort function indicates the fact that the production of each item 

requires on average the same amount of effort. Whereas in the power case, the effort function, 

which is concave, means that the production of each item requires less and less effort. This last 

property enables us to say that a power distribution is an exponential process with a 

logarithmic effort function. This characterization clarifies, without using the powerful result of 

Price on the cumulative advantages process, the principle of least effort, which is expressed by 

the properties of the logarithmic function. This property, with that of invariance of scale, 

(Egghe 2005) gives Lotkaian informetrics all its force. 
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