Application des méthodes à noyaux à la fouille de données textuelles

Abstract : Kernel methods have recently been introduced to solve Natural Language Processing and Text Mining problems. Kernels define a generalised similarity measure between objects of arbitrary structure, with three interesting properties, namely the ability to incorporate prior knowledge about the problem, the implicit mapping of the data into a new feature space, which allows for very richer representation and where problem solving is easier, and finally the independence of learning algorithms from the dimension of this new feature space (—the Kernel trick“). These properties, coupled with robust learning algorithms (for classification, clustering, dimension reduction, filtering, ...) provide some remarkable results in Text Mining tasks, such as document categorization, concept clustering, word sense disambiguation, information extraction, relationship extraction and automatic multilingual lexicon extraction.


http://archivesic.ccsd.cnrs.fr/sic_00001251
Contributor : Roger T. Pédauque <>
Submitted on : Wednesday, December 8, 2004 - 2:00:41 PM
Last modification on : Wednesday, December 8, 2004 - 2:00:41 PM

Identifiers

  • HAL Id : sic_00001251, version 1

Collections

SHS

Citation

Jean-Michel Renders. Application des méthodes à noyaux à la fouille de données textuelles. Jun 2004. <sic_00001251>

Export

Share

Metrics

Consultation de
la notice

119

Téléchargement du document

2