version française rss feed
s'authentifier
Fiche détaillée  Récupérer au format
(2004)
Liste des fichiers attachés à ce document : 
PDF
sic_00001163.pdf(96.6 KB)
sic_00001163, version 1
Reconnaissance de caractères manuscrits par Réseaux Bayésiens Dynamiques
Khalid Hallouli, Laurence Likforman-Sulem, Marc Sigelle
(21/06/2004)

Ce travail présente une approche pour la reconnaissance des caractères manuscrits qui a l'avantage de surmonter les limitations des modèles de Markov Cachés (HMMs). L'idée principale consiste à construire des modèles 2D en couplant dans un réseau bayésien dynamique deux réseaux de type HMM. Le premier modèle HMM est obtenu à partir d'observations de type colonnes de pixels (HMMvertical), le second à partir d'observations de type lignes (HMM-horizontal). L'un des avantages de ces modèles est de nous permettre d'obtenir une bonne modélisation des images des caractères manuscrits, due aux regroupement des informations concernant les lignes et les colonnes. Les résultats expérimentaux, obtenus sur la base de chiffres MNIST montrent que l'approche par réseaux bayésiens est très prometteuse dans le domaine de la reconnaissance de l'écrit.
Sciences de l'Homme et Société/Sciences de l'information et de la communication/Ingénierie des systèmes d'information
Semaine du Document Numérique (SDN 2004). Conférence Internationale Francophone sur l'Ecrit et le Document (CIFED 04). Classification et caractères manuscrits. Intelligence artificielle – Réseau Bayésien Dynamique – Reconnaissance de caractères manuscrits – Inférence.

tous les articles de la base du CCSd...