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Abstract

Statistical distributions in the production of information are most often studied in the framework of Lotkaian informetrics. In this article, we recall some results of basic theory of Lotkaian informetrics, then we transpose methods (Theorem1) applied to Lotkaian distributions by Leo Egghe (Theorem 2) to the exponential distributions (Theorem 3, Theorem 4). We give examples and compare the results (Theorem 5). Finally, we propose to widen the problem using the concept of exponential informetric process (Theorem 6).
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1.
Introduction
Many phenomena studied in informetrics, concerning the production or use of information, can be represented by a triple (Source, Production function, Items) called Information Production Process (IPP) (Egghe, 1990). This consists of a set of sources S, a set of items I, T (respectively
[image: image1.wmf]A

) denotes the total number of sources, respectively the total number of items, and finally a function of production or use that quantifies the production of the items by the sources. There are several methods for representing these phenomena. In this article, the theory is developed with a size-frequency function 
[image: image2.wmf]f

, the most usual form for quantifying this production.
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describes the density of sources with item density
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 (in the discrete setting
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 indicates the number of sources that have produced 
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items). We assume 
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is continuous.
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 indicates the maximal item per source density.
The following two equalities allow us to calculate 
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and 
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Of course it may happen that 
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 and 
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 are infinite if 
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 is infinite. If 
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 is finite we have the following inequality: 
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, the average number of items by source. We have, 
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In practice, the production function of an IPP has similar characteristics in very diverse situations of production or use of information: 

-
Authors (Sources) write articles (Items)


-
Words in a text (Sources) produce occurrences of words in the text (Items)


-
Web pages (Sources) contain links (Items)


-
Web sites (Sources) are visited (Items)


-
Requests (Sources) through a search engine are sent by users (Items).
In all quoted examples, if we quantify the production of the items by the sources with a  size-frequency function, this one is decreasing with a long tail and a gap between a high number of sources producing few items and a small number of sources producing a lot. In practice, when one determines a best-fitting curve, we must truncate the distribution because for high frequencies the number of items produced is very low. This characteristic results in the standard deviation often being extremely high compared with the average and is a poor indicator. The statistical distribution most used in informetrics is the inverse power function, also called Lotkaian informetric distribution. This distribution is unimodal; it models the information production processes in  many of the quoted examples . At present, with Internet, there are many examples for which the data resulting from the Web has been adjusted by such models (Bilke & Peterson, 2001). The GIGP (Zero-truncated Generalized Inverse Gaussian-Poisson) model known and tested over a long time (Burrel & Fenton, 1993) is also used to day to adjust some of this data (Ajiferuke & Wolfram, 2004).
2.
Lotkaian informetric distribution 
With the preceding notations, a Lotkaian informetric distribution is given: 
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We will limit ourselves to the case where 
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, meaning where 
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(number of sources) is finite and where the corresponding probability density function is: 
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 is finite if 
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. More generally 
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 has moments of order 
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The mathematical properties of these functions (Haitun, 1982) have been to great extent studied. They have often been opposed to the functions modeling Gaussian processes. They have been the subject of a recent work of informetrics (Egghe, 2005), which contains many results. This work has the merit among others of unifying all the work done concerning empirical applications, Lotka, Bradford, Zipf, Mandelbrot, with the mathematical theory of IPP, choosing, as central distribution, the Lotkaian distributions. The coefficient 
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 characterizes the gap between strongly productive sources and those that produce little. Many works (Bookstein, 1990a, Bookstein, 1990b) have shown the strength of the law of Lotka (Lotka, 1926). In addition, the value 
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 plays a key role since we know, according to whether 
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 is smaller or greater than 2, that the representation of Leimkuhler (Rousseau, 1988) has or does not have a turning point; in informetrics the term “Groos droop” (Groos,1967) is often used.
Finally, these distributions are scale free. A function 
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 is called scale-free if, for every positive constant C, there is a positive constant D such that
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 (Egghe, 2005 p 27). This property is important when frequencies are observed. It allows us to change scale without changing model. In the main, it justifies the choice of Leo Egghe in his work that we have just quoted. If we impose the scale free property, it implies that some decreasing functions, such as the decreasing exponential function one, are not allowed.
However, the phenomena of obsolescence and growth of quotations on a subject of search in scientific literature (Egghe, 1993) are modeled by exponential processes.

In addition, the often ignored result of Naranan (Naranan, 1971), shows that distributions of Lotkaian type can be deduced under certain conditions from an exponential growth of sources and the number of items produced by these sources. It gives the exponential functions an importance that we cannot neglect. In the previously quoted examples, the temporal parameter plays the role of variable.
Finally the law of geometrical probability, which is the discrete version of the exponential law, is often used as a rough approximation for modeling the processes of commands or library circulation data  (Bagust, 1983).
Thus, all these reasons lead us to adopt a procedure similar to that of Leo Egghe (Egghe, 2005) and to find a mathematical result for the exponential distributions, which is a necessary condition of the same type as Lotkaian distributions.
3.
Reminder of some results of basic theory of Lotkaian informetrics
There is a lot of statistical work that consists of verifying the statistical regularities in the variety of examples mentioned in the introduction, and making fittings. Lotkaian distributions play an important role here. However, to my knowledge, few bibliometric researchers use the mathematical theorem, certainly recent, which we remind is a necessary condition for the production of sources covering the items produced. This theorem plays a key role in this article.
Theorem 1  (Egghe 2005 p 111)
The following assertions are equivalent, given 
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(i) There exists a function 
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(ii) There exists a function 
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Moreover if (i) or (ii) holds  we have, necessarily that 
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We refer readers interested in the demonstration to the reference quoted. What is interesting for us here in the theorem is the implication 
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Leo Egghe applies this theorem to Lotkaian informetric distributions.
Theorem 2 (Egghe 2004)

Let 
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(i) If the inverse power function as in (2.1) satisfies (1.1) and (1.2) if we have 
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and
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which implies 
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If 
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is finite (the general case)
(ii) If 
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We will follow exactly the same procedure for the exponential functions (Theorem 3 and Theorem 4), then compare the results (Theorem 5).
4.
Exponential distribution
4.1
Theoretical results 
With the preceding notations, an exponential function : 
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We can also write it in an equivalent form: 
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We will use the first form here. The corresponding probability density function is : 
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As for the power function, 
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 has as a maximum value for 1.
Unlike the inverse power function, a decreasing exponential function has moments  of order 
[image: image75.wmf]n

 whatever the 
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positive. 
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 the moment of order 
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 divided by 
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of an exponential function, we have 
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Proof
An integration by part gives: 
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More particularly we obtain:
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□
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What are the conditions, given 
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We separate the study into two cases.
1)
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Theorem 3
Let 
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 be given. The exponential function defined in (4.1) satisfies the following conditions: 
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Proof
By solving the integrals above (see (4.2)), we obtain: 

[image: image99.wmf]a

a

C

dj

e

C

j

=

ò

¥

-

-

1

)

1

(

.

 
and

[image: image100.wmf])

1

1

(

.

.

1

2

)

1

(

a

a

a

+

=

ò

¥

-

-

C

dj

e

j

C

j


.
We then deduce the desired results ((4.3), (4.4)) by  solving the two equations:
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As for a Lotkaian distribution, 
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 only depends on 
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. When fitting, the formulas ((4.3),(4.4) give a rough estimate of the parameters of the exponential function (4.1).
□
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Theorem 4
Let 
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 finite and an exponential function defined by (4.1) verifying the two conditions: 
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holds.
Proof
According to the preceding lemma, we have : 
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The assertion (ii) of theorem 1 allows us to conclude. It will be noticed that the result is valid for any value 
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Construction of 
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Now its existence is proven, we must show how to build it. To simplify the notations we put 
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Unlike the case where 
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 is infinite there are many values 
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□

We have just seen a necessary condition for an exponential function to produce a given number of items with a given number of sources. We shall see that if this necessary condition holds, then it  also holds for a Lotkaian distribution. More precisely, we have the following result: 
Theorem 5
Let 
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4.2
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Note

The results in section 4 could be considered as a “mathematical fitting” method for exponential function, as opposed to statistical fitting.
5.
Perspectives: exponential informetric process
In the article (Lafouge & Prime-Claverie, 2005) we define an exponential informetric process in terms of an exponential function and an effort function where the average quantity supplied by the sources, to produce all the items is finite. More precisely, a set of functions, denoted EF. 
EF = {
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, we call exponential informetric process the size-frequency function 
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 where the following quantity
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is finite, 
[image: image170.wmf]F

corresponds to the quantity of effort produced by 
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Note

The total number of sources T, 
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Examples

The respective functions of effort, 
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 correspond to the inverse power function 
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, studied previously.
Problem

What are the conditions, given the quantity of effort
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, the number of sources T , for the existence of an exponential informetric process 
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We will limit ourselves to the case where the respective functions of effort correspond to the inverse power function (2.1) and to the exponential function (4.1), and where 
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Theorem 6
Let 
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(i) the exponential informetric process as in (5.1) where 
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(ii) the exponential informetric process as in (5.1) where 
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Proof

(1) By (4.1)  
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We then deduce the desired results (5.4) and (5.5) by solving the two equations:
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The case where 
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