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Abstract
Statistical distributions in the production or utilization of information are most often studied in the framework of Lotkaian informetrics. In this article, we show that an Information Production Process (IPP), traditionally characterized by Lotkaian distributions, can be  fruitfully studied using the effort function, a concept introduced in an earlier article to define an Exponential Informetric Process. We thus propose replacing the concept of Lotkaian distribution by the logarithmic effort function. In particular, we show that an effort function defines an Exponential Informetric process if its asymptotic behavior is equivalent to the logarithmic function 
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1. Introduction

Statistical regularities observed in the production or use of information have been studied for a long time in informetric processes. Today, they are again very topical, as is testified by the many articles. They are characterized by phenomena of invariance of scale during research into the traffic on Internet (Aby & al., 2004), (Barabasi & al., 2000). They are also observed when the topology of the Web is studied (Bilke & al., 2001) or when counting the frequencies of the number of pages or the number of degrees entering or leaving the Web pages in a collection of sites (Prime Claverie & al., 2005). Their most current mathematical formulation is that of an inverse power function, usually called a Lotkaian informetric distribution.  A recent book from Egghe (Egghe, 2005) proposes a mathematical approach to the framework of Lotkaian informetrics, illustrated by several examples.

In this article, we continue a study begun previously (Lafouge & Prime Claverie, 2005) where we defined the Exponential Informetric Process by introducing the concept of effort function. We are studying here informetric processes while drawing on traditional mathematical formulation in continuous mode. Mathematically, we represent the effort function by the logarithmic function, which is related to the effort function that appears in the law of Lotka (Lotka, 1926).

2. Information Production Process and effort function

Statistical distributions in the production or utilization of information, such as the law of Lotka (Lotka, 1926) - production of articles by researchers in a scientific community - generally fit into simple unidimensional models. These models can be represented by the diagram of Figure 1, introduced into informetric systems by Leo Egghe (Egghe, 1990) and called "Information Production Process" (IPP). An IPP is a triplet made up of a bibliographical source, a production function, and all the elements (items) produced.
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Figure 1: Schematic representation of an Information Production Process 

In (Lafouge & Prime Claverie, 2005) we assume that an item produced requires a certain amount of effort and therefore we define the informetric process by introducing the effort function (see Figure 2). We use the size frequency form, and denote as 
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 , the amount of effort produced by the process is simply equal to the number of items produced. Since the production and the effort (function) appear to be logically connected, we use both to define the Exponential Informetric Process.
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Figure 2: Schematic representation of an informetric process using the effort function 

3.  Exponential Informetric Process 

In the article (Lafouge & Prime Claverie, 2005) we define an Exponential Informetric Process in terms of an exponential density and an effort function where the average quantity supplied by the sources to produce all the items is finite. More precisely, we define a set of functions denoted
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we call Exponential Informetric Process the following density function 
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corresponds to the average of effort produced by the density process 
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3.1. Entropy and effort
The Maximum Entropy Principle (MEP) maximizes the entropy subject to the constraint that the effort remains constant, whereas the Principle of Least Effort (PLE) minimizes the effort subject to the constraint that the entropy remains constant (Egghe, 2005). 

Assuming 
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 an effort function and 
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(b)
The two principles, maximum entropy and least effort are verified simultaneously.

(c)
If 
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Also, in the following, for 
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is an Exponential Informetric Process if condition [2] is verified, that is if the average effort, 
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Note 1

More generally, we can easily show that if 
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defines an Exponential Informetric Process and that 
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Note 2

It is important to note that there exist effort functions for which 
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 is a density function but the condition [2] is not satisfied.

The reader will see that, for the following effort function:
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Proposition 1

Assume 
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Proof

Given that 
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We can therefore conclude that if 
[image: image70.wmf])

(

f

n

 is an Exponential Informetric Process the same holds for 
[image: image71.wmf])

(

g

n

.

□

Considering Note 2 and the result of Proposition 1, it would be interesting to define an Exponential Informetric Process with a different condition from condition [2]. This condition and related results obtained by means of Proposition 1, will be presented in the following. 

4. Characterization of an Exponential Informetric Process

As mentioned before, we seek to define an adequate condition that will allow us to say if any effort function defines an Exponential Informetric Process. To do this, we will compare the asymptotic behavior of an effort function with the effort functions of a Lotkaian distribution.

4.1.  Lotkaian distribution

We saw in the introduction that the most current formulation for modeling many phenomena related to the use or production of information is that of Lotka, given here in continuous form:
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The properties of these hyperbolic distributions or inverse power laws have been widely studied (Egghe, 2005). It seems essential to us to be able to compare these functions with an exponential density, defined by an effort function.

We easily go from [3] to [1] taking as effort function 
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. The effort function of an inverse power function is a function proportional to the logarithmic function. This characteristic clarifies the principle of the least effort. This result is implicit in the article of Yablonsky (Yablonsky, 1981), where he shows the relationship between the principle of the maximum entropy and an inverse power function. Also, it is known that such a distribution (Lafouge & Michel, 2001) has an entropy equal to 
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4.2.   Effort function and Exponential Informetric Process

4.2.1. Characterization by logarithmic effort function
In the following, we will characterize the Exponential Informetric Process by the effort function of a Lotkaian distribution.

Theorem 1

Let 
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where C is a finite number greater than one or infinite. Then 
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 defines an Exponential Informetric Process.
Proof

a) 
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 is finite

In order to define an Exponential Informetric Process it suffices to show that condition [2] is verified. Since 
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According to the preceding, we know that 
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defines an Exponential Informetric Process.

Condition [4] implies: 
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Choosing 
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The relationship [4] allows us to write:
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Proof follows, as for the finite case.

□

In other words, an effort function defines an informetric process if its asymptotic behavior is equivalent to the logarithmic function 
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Examples

a) Exponential case

This case corresponds to a linear effort function:
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We find the well-known case of an exponential distribution : 
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b) Mixed case

This case corresponds to an effort function that is the sum of a linear type function and a logarithmic type function. The effort function is: 
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In this case 
[image: image114.wmf]¥

+

=

¥

®

)

(

)

(

x

Log

x

f

Limit

x

.

The exponential process corresponding to the density function is :
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which corresponds to the distribution of Erlang. If 
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 is real and non-integer, we recognize the gamma distribution.

c) General inverse power law

The following example is an inverse power law modified for low frequencies. This case corresponds to an effort function of type:
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The associated density function is:
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 is a standard constant. This distribution, used for example in (Naranan, 1992), allows us to adjust statistical distributions on the vocabulary of various language corpora. In general, calculations give us 
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, the effort function will have a different effect for low frequency values, which are known to have an important influence. In this case, the adjustment will be done via a multi-linear regression after transforming the data on a logarithmic scale.

Note 1 allows us to consider many other functions of this type.

d) Other examples

Among many other possible examples we have, for instance, the normal Log law with an effort function of type: 
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Every effort function of type: 
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also defines an Exponential Informetric Process. 

We can show that for these functions, the quantity of effort is finite and is equal to: 
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We can also quote the distribution of Weibul here. This distribution, like the normal Log distribution, can be increasing then decreasing. This is why we require an effort function to increase only on the interval
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□

Regrettably, the preceding theorem is not a necessary and sufficient condition. In fact, when 
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Nevertheless, we can provide a necessary condition, presented in Theorem 2.

Theorem 2

Assume g is an effort function so that the 
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where C is a positive number less than 1, then 
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 is not recognized as an Exponential Informetric Process since its average of produced effort is infinite.

Proof

Since 
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□

4.2.1. Characterization by generic effort function

The two previous theorems can be generalized replacing the logarithmic function by an effort function having a finite (Theorem 3) or infinite (Theorem 4) quantity of effort. 

Theorem 3

Assume 
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Proof

The same as in the Theorem 1, using the argument:

[image: image159.wmf]¥

<

ò

¥

-

1

)

(

)

(

.

dx

x

f

e

x

f

.

□

Like Theorem 3, which generalizes the result of Theorem 1, the following theorem generalizes the result of Theorem 2.

Theorem 4

Assuming 
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is an effort function and 
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 an effort function with an infinite quantity of effort and verifying the condition:
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then 
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 is not an Exponential Informetric Process, since its quantity of effort is infinite.

The proof is the same as in Theorem 3, using the argument that the quantity of effort  
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4.3. Moment and Exponential Informetric Process

It is a known fact that a Lotkaian distribution has only moments of order 
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 is the exponent of the inverse power law). An Exponential Informetric Process may have, or not have, moments of order n. We will give a sufficient condition so that an Exponential Informetric Process has a moment of order n. In order to do this, we will compare the asymptotic behavior of an effort function with an Exponential Informetric Process, whose effort function is the power function 
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Theorem 5

Let 
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where C is a finite number greater than one or infinite, then 
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 defines an Exponential Informetric Process characterized by moments of order
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Proof

According to Theorem 1, 
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 is an Exponential Informetric Process. Let us show that it has moments of order n:
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We can then conclude because 
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 is an Exponential Informetric Process.
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The proof is identical.

□
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5. Conclusion
An IPP (Information Production Process) is defined by sources, a production function and the elements produced. Given that each element produced requires a certain quantity of effort, it is justified to approach an IPP as much by its effort function as by its distribution. In an Exponential Informetric Process, both are closely linked.

In informetrics, the traditional cases of IPP are generally characterized by Lotkaian distributions. Given that it is justified to approach an IPP by the effort function, we here propose replacing the concept of Lotkaian distribution by the logarithmic effort function. The results presented in this article, in particular Theorem 1 and Example c), show that if a distribution of effort is equivalent to the logarithmic function 
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with 
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, we have an Exponential Informetric Process.
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